INTRODUCTION

Each of us relies on a network of transportation options every day, whether we walk, fly, take a ferry or bus, ride a bicycle, or drive. Our transportation network connects us with each other, our families, our jobs, and essential services like medical care. It’s how we receive our food, fuel, packages, and the basic goods that contribute to our quality of life. When it breaks down, there are real impacts to our everyday lives—lost time, missed opportunities, and service interruptions.

Maintaining a well-connected, reliable, and safe transportation system takes planning. So how does the Alaska Department of Transportation & Public Facilities (DOT&PF) prepare for a world where changing populations, aging transportation infrastructure, funding challenges, and cutting-edge technologies combine? And how does it plan for a state that is so geographically and socioeconomically diverse, with multimodal connectivity that depends on road, rail, water, and air for the most basic needs? The answer is by working with planning partners, agency stakeholders and the public to understand individual and collective needs, framing potential, and using the best data resources and tools to forecast the most likely outcomes.

Alaska Moves 2050, the Statewide Long Range Transportation Policy Plan and Freight Plan (LRTP/FP), will outline goals, policies, investment strategies, and measurable actions for an adaptable and resilient transportation system—a system that will continue to serve all Alaskans, businesses, and visitors far into the future.
Planning Process

This planning effort updates the 2016 LRTP, Let's Keep Moving 2036, and is being developed through a series of technical memoranda, meetings with a Statewide Transportation Advisory Committee (STAC) and Freight Advisory Committee (FAC), stakeholder interviews, and public outreach events which will ultimately culminate in final documents that serve as Alaska’s LRTP/FP. Key phases in the process include:

- **Data Collection and Analysis Phase.** During this phase, a state-of-the-state, high-level assessment will be completed to determine how the current system is performing and understand national and statewide trends that will help inform the 2050 vision. The assessment will inventory the planning context, socioeconomic trends, the current transportation system and how it is performing, and the funding climate. It includes multiple meetings with the STAC and FAC and stakeholder interviews. It also includes a virtual public outreach event and survey to gain insight into public priorities. Findings of this phase will be documented in:
  - Transportation Assessment Technical Memorandum #1
  - Freight Assessment Technical Memorandum #2
  - Financial Analysis Technical Memorandum #3

- **Strategic Direction Phase.** Visions, goals, and polices for the transportation system are established in this phase, with the focus on moving people and goods safely and efficiently and to align with federal, state and local priorities for transportation. Performance targets that represent the goals are then set to measure progress over time. These measures track key performance metrics at a statewide level to assess whether the desired outcomes are being achieved. Finally, during this phase, scenario planning is conducted to assess the transportation system’s performance under three different plausible futures. Scenario planning helps decision-makers consider how the system will perform under different sets of circumstances (such as high, medium, or low economic growth or different investment strategies), and what the trade-offs might be under each scenario. This phase’s findings will be reported in:
  - Vision, Goals, and Performance Measures Technical Memorandum #4
  - Scenario Planning Technical Memorandum #5

- **The LRTP/FP Plan Development Phase.** Information from the previous phases will be summarized in a final LRTP/FP that outlines polices to guide planning and programming decisions for DOT&PF-owned and managed assets. The LRTP will remain a high-level policy document and will not identify specific projects. The FP will include priority freight projects. The final product of this phase, and of the planning process will be:
  - Alaska Moves 2050 LRTP/FP
Overview of the LRTP

The purpose of the LRTP and FP update is to guide planning and programming decisions for DOT&PF-owned and managed multimodal transportation assets for the next 25 years. These assets include highway, aviation, transit, rail, marine, and non-motorized facilities. The LRTP is required by federal regulation (23 CFR 450.216) to provide a clear link between policy, planning, evaluation, and the investments that are made through a cooperative statewide planning process. States are generally required to update their plans every five years to address new trends and any new federal regulations. The LRTP is also required by Alaska State Statute (AS 44.42.050).

Ultimately, this plan will present policy recommendations to achieve a common vision developed with stakeholders, businesses, and other federal and state partners.

The plan updates comply with regulatory requirements of the Fixing America’s Surface Transportation (FAST) Act (FAST Act) and successive federal transportation authorization for long-range statewide transportation plans and state freight plans. This includes addressing the 10 planning factors (23 CFR 450.206):

- Support the economic vitality of the United States, the states, metropolitan areas, and nonmetropolitan areas, especially by enabling global competitiveness, productivity, and efficiency;
- Increase the safety of the transportation system for motorized and non-motorized users;
- Increase the security of the transportation system for motorized and non-motorized users;
- Increase accessibility and mobility of people and freight;
- Protect and enhance the environment, promote energy conservation, improve the quality of life, and promote consistency between transportation improvements and State and local planned growth and economic development patterns;
- Enhance the integration and connectivity of the transportation system, across and between modes throughout the state, for people and freight;
- Promote efficient system management and operation;
- Emphasize the preservation of the existing transportation system;
- Improve the resiliency and reliability of the transportation system and reduce or mitigate stormwater impacts of surface transportation; and
- Enhance travel and tourism.
The LRTP and FP are being updated at a unique period in our recent history. The COVID-19 pandemic has impacted, and continues to impact, how, when and by whom the statewide transportation network is used. Travel is restricted at Alaska/Canada border crossings, the summer 2020 cruise season was canceled, air travel was reduced, and at times, limitations were placed on intercommunity movement. Commuters who normally drive, ride the bus, or even fly for businesses are now working remotely, resulting in fewer trips. The pandemic has also resulted in a significant increase (15 percent) in air cargo moving through the Ted Steven’s International Airport (ANC). Freight and airlines are seeing increases in e-commerce deliveries.

Unless otherwise noted, data reported in this memorandum were collected prior to March 2020, the beginning of the COVID-19 pandemic in Alaska. Longer-term transportation system impacts of the pandemic are largely unknown at this time.

- Because the planning horizon used for state transportation plans is long-range—and funding, revenue, and political leadership vary greatly over the planning period—assumptions and a certain amount of judgment have been applied to assess the effects of current trends, forecasts, and technology over the next 20-30 years.

Performance-Based Planning

As a steward of public transportation dollars, DOT&PF is looking for more efficient, economical ways to keep Alaskans moving through service and infrastructure. This plan update follows a performance-based planning and programming framework to directly link statewide goals and planning to project programming. Performance-based planning is defined by the Federal Highway Administration as “a data-driven, strategic approach, providing for public and stakeholder involvement and accountability, in order to make investment and policy decisions to attain desired performance outcomes for the multimodal transportation assessment.” The benefits of this approach include:

- **Improved decision-making.** Decisions are informed by data and therefore more objective.

- **Higher return on investments.** Investment priorities are linked to systemwide transportation strategic goals and desired outcomes.

- **Better accountability and transparency.** Clear expectations are set about the level of performance likely achievable with a given level of funding. It’s easier for people to understand why transportation dollars were spent the way they were.

- **Improved performance.** Performance targets (desired outcomes) are set and progress is monitored and measured over time. It becomes possible to answer the question: “Are we achieving what we hoped?”
Intermodal Coordination

The complexity of Alaska’s transportation system cannot be overstated, as illustrated in Figure 1. Consider the following:

- Alaska’s mountain ranges, glaciers, and vast wilderness create natural barriers to transportation. Of the 20 highest peaks in the United States, 17 are in Alaska. There are more than 3,000 rivers in Alaska and over 3 million lakes.

- Alaska is the biggest state in the United States, sure, but it is also larger than the combined area of the 22 smallest U.S. states. Alaska boasts the northernmost (Point Barrow) and the westernmost (Amatignak Island in the Aleutians) points in the United States.

- In the state capital of Juneau, there are no roads that connect to the rest of Alaska or North America.

- The Alaska Marine Highway System (AHMS) stretches over roughly 3,500 miles of coastline, from Bellingham, Washington, to Unalaska in the Aleutian chain, and provides service to 35 communities—many of which are reliant on the ferry for travel and goods provision. For reference, I-90 is an east–west transcontinental freeway and the longest interstate highway in the United States at 3,020.54 miles, stretching from Boston to Seattle.

- The National Highway System is unlike any in the Lower 48. It includes six-lane urban freeway segments with volumes up to 68,000 a day (2019), and 400 miles of the mostly-unpaved Dalton Highway extending to the North Slope with segments seeing as little traffic as 105 vehicles a day (2019).

- Airport services span from the North Slope to the Aleutian Chain. The distances between some airports are comparable to the distance between Minneapolis, Minnesota and Orlando, Florida. Of Alaska’s communities, 251 are served exclusively by air.

- All this transportation infrastructure needs ongoing maintenance, and in some cases, reconstruction or replacement to increase efficiencies and safety, mitigate congestion, and improve resiliency and redundancy in the system. This is true for all aspects of the state’s transportation infrastructure: highway systems, rail and freight, bicycle/pedestrian, air, maritime, and public bus systems. This requires the joining together of the more urban/suburban communities and rural/remote areas into a single system that incorporates and maximizes all modes to enable economic growth, move goods, and improve personal mobility.
Figure 1. Alaska’s Transportation System
While DOT&PF is directly responsible for certain assets, metropolitan planning organizations (MPOs), local governments, tribal entities, transit agencies, federal and other state agencies, and private companies also fund, own, operate, and/or maintain connecting assets. Federal-aid-funded transportation projects must also be based on a continuing, comprehensive urban transportation planning process undertaken cooperatively by the state and local governments. Across the state, there are:

- 165 municipalities, 144 cities, 19 boroughs, and one federally-incorporated reservation that have varying powers when it comes to the provision of transportation services.
- Regional, local, and tribal governments, and regional tribal nonprofits. Today, almost all 229 federally-recognized tribes in Alaska have tribal councils as their governing bodies.
- MPOs—regional transportation policymaking and planning bodies with representatives of local, state, and federal governments and transportation authorities—that manage the surface transportation planning process in urban areas, in cooperation DOT&PF.

Specific to roadways, the U.S. Department of Transportation (USDOT) requires urban areas with a population greater than 50,000 to establish an MPO. MPOs are tasked with distributing federal funds for transportation projects in a manner that upholds federal and state transportation goals while also monitoring federally-mandated performance measures for safety and efficiency. MPOs develop a variety of work products, including a metropolitan transportation plan (20 year forecast) and transportation improvement plan (short-term funding program) so expenditures for transportation projects and programs are based on a cooperative planning process that fulfills the regional vision and conforms with federal requirements. There are two MPOs in Alaska and a third being formed:

- **Anchorage Metropolitan Area Transportation Solutions (AMATS).** AMATS covers the urbanized Anchorage Bowl and Chugiak-Eagle River areas.
- **Fairbanks Area Surface Transportation (FAST) Planning.** FAST Planning covers the urbanized areas of the Fairbanks North Star Borough, including the cities of North Pole and Fairbanks.
- **Mat-Su MPO (currently being formed).** The Mat-Su MPO is expected to cover the cities of Wasilla and Palmer as well as the Lakes area and Knik-Fairview.

---

1. Source: Alaska’s Local Government, Alaska Municipal League
3. 2019 public road mileage—17,735
The statewide LRTP/FP is one of many critical state, regional, and local plans aimed at improving Alaska’s transportation system. It plays a critical role in unifying regional and modal plans into a comprehensive vision for the future statewide transportation system.

To facilitate serving such a diverse and large constituency, DOT&PF is administratively divided into three regions: Northern Region, Central Region, and Southcoast Region.

Figure 2: DOT&PF Regions
Operation and Maintenance

DOT&PF’s maintenance and operations personnel are responsible for the day-to-day operation and maintenance of the state’s transportation system. Maintenance and operations are organized geographically by the three DOT&PF Regions.

- **The Central Region** has four districts: Matanuska-Susitna, Anchorage, Kenai Peninsula, and Southwest. It maintains over 4,630 lane miles of roads, and over 570 lane miles of runways at 70 airports. This includes four primary airports located in Aniak, Bethel, Dillingham, and Homer. Of these, Bethel, Dillingham, and Homer airports are certificated by the FAA under the federal government’s Part 139 regulations and operated to meet specific standards and guidelines. Local contractors maintain 46 of the region’s smaller, community airports. Central Region is also responsible for maintenance and operations of the Whittier Tunnel, the longest highway tunnel in North America at 2.5 miles.

- **The Northern Region** response territory comprises 65 percent of the state’s total land area, and is divided into seven districts: Tazlina, Tok, Fairbanks, Denali, Dalton, Valdez, and Western. It maintains over 8,800 lane miles of roads and highways (paved and unpaved) and 1,500 lane miles of airport surfaces. Of the 99 airports for which they are responsible, four are large primary airports certificated by FAA: Utqiagvik, Deadhorse, Kotzebue, and Nome. Local contractors maintain 60 of the region’s smaller community airports. The Northern Region is responsible for the highways that parallel the entire length of the Alyeska Pipeline from the North Slope oil fields to the marine terminal on the shores of Prince William Sound in Valdez.

- **The Southcoast Region** has two separate districts that serve the coastal regions of Southeast Alaska, Kodiak Island, a portion of the Alaska Peninsula, and the Aleutian Chain. It maintains 1,528 lane miles, 43 harbors, and 69 airports, including Part 139 airports in Adak, Akun, Cold Bay, Iliamna, Kodiak, King Salmon, Unalaska, Sitka, Wrangell, Petersburg, Gustavus, and Yakutat. The Southcoast Region contracts with local communities and private contractors to maintain state assets where there is no DOT&PF presence.

Operations and maintenance responsibilities include all the activities needed to keep highways, bridges, airports, and harbors in good condition and safe for the traveling public. These include highway and airport snowplowing and snow hauling; avalanche control and mitigation; vegetation management; guardrail repair; sign maintenance; street/traffic light repair; drainage structures maintenance; and fence maintenance. Operations and maintenance personnel also respond to all emergency/weather related situations, such as snow and ice that needs to be removed, fallen trees, mud and landslides, and roadway/airport flooding.

Maintenance and operations are funded through the state budget. As state revenues decline, there is less money available for maintenance. Deferred maintenance needs continue to grow, and continuing to provide the same level of service with less money will become increasingly challenging for all modes. Of particular concern is snow removal. Delays in clearing snow from facilities impacts economic activities and disrupts daily lives. Many maintenance and operations personnel are also aging out, and it is more and more difficult to find qualified replacements. This will be an issue in coming years.
Executive Summary

To plan effectively for tomorrow, it’s important to understand what’s happening today. This planning-level assessment of each transportation mode was the first step in developing the Alaska Moves 2050 Long-Range Transportation Plan and Freight Plan (LTRP/FP). It identifies the key issues and trends that may shape the future transportation system.

Alaska’s transportation assets and programs are part of an integrated, multimodal system. This connected system requires DOT&PF to keep in mind all potential transportation users, how they move between modes, and their communities and environmental contexts when making choices about how to invest resources, implement programs, or develop projects.

PLANNING CONTEXT

Specific transportation-related issues and potential solutions vary across the geographic, environmental, cultural, and economic conditions found in Alaska. Finding the right balance between urban and rural transportation investments will be essential.

Urban transportation investments serve more people at a lower per-person cost. Rural investments serve people at a higher per-person cost and have limited, if any, redundancy in transportation choices.
**Population**
While the state’s medium and high population projections show overall growth, under its low scenario there could be statewide population loss over time. Regardless of projected growth, some areas are expected to lose population over the coming decades. Energy, fuel, food, and other costs are expected to remain high, especially in communities that are not on the road system due to limited transportation infrastructure and a small user base.

**Labor Force**
Alaska’s labor force is highly seasonal, with wide swings in employment, particularly in commercial fishing, construction, and tourism. Between now and 2050, employment is expected to grow in the goods-producing industries of natural resources and mining (15.2 percent growth), construction (10.7 percent), and manufacturing (9.9 percent), indicating potential demand for transportation infrastructure and services.

**Environment**
Climate change impacts vary across Alaska. In interior areas, permafrost thaw and subsidence are generally the most noticeable issue. In the northern and western areas of the state, coastal erosion is a bigger threat. Climate change is also causing glacial ice to retreat, bringing increased flooding and changing watercourses. All these conditions pose a threat to transportation infrastructure, regardless of mode.

**Emerging Technologies**
Over the planning period, DOT&PF will need to monitor the impacts of new transportation technologies—such as automated vehicles and unmanned aerial systems (drones)—on socioeconomic, land use, and travel demand trends. DOT&PF must adopt flexible goals and policies to prepare for these technologies. Road system connectivity and the cost and reliability of electricity, cellular service, internet, and other key infrastructure vary significantly between urban, rural, and remote areas. This could pose barriers to widespread implementation of new transportation technologies.

**Current Conditions and Key Trends**
Transportation infrastructure is the basic lifeline for commerce and everyday life. The desire to develop and modernize Alaska’s transportation systems is balanced by the importance of maintaining the current network, making it resilient to disasters of all types, and maintaining accessibility to remote and rural communities.

Integrating and connecting modes begins with an understanding of each mode and its role in the statewide system of moving people and goods. The following is a brief overview of key trends identified during the high level of assessment of Alaska’s transportation system.
Road System
CURRENT CONDITIONS:
- DOT&PF owns more of the roadway centerline miles than any other agency. Most State-owned roads are rural, with only 12 percent classified as urban.
- Though urban arterials make up less than 10 percent of statewide roadway mileage, they sustain the state’s highest number of total vehicle miles traveled (VMT), at 32 percent.
- Urban roadways carry more single-unit and combination trucks than rural roads. However, trucks make up a higher proportion of traffic on rural roads.
- Fair pavement conditions prevail on 70.7 percent of roadways and good conditions on 25.7 percent. The majority of bridges are in fair condition.
- While there are fluctuations from year to year, serious-injury crashes are trending downward and traffic fatalities are on the rise (fatality rates per 100 million VMT from 2008 to 2017).

LOOKING AHEAD:
- Foster resiliency by maintaining the road system
- Continue to improve the reliability, safety, operational efficiency, and connectivity of the roadway network.
- Establish performance-based planning methods to prioritize future needs.
- Explore opportunities for local entities to own and manage roads classified as “local.”

Active Transportation
CURRENT CONDITIONS:
- For many people, especially in rural Alaska, non-motorized modes are the primary means of getting around.
- Steady progress has been made to add and improve pedestrian and bicycle facilities along roadways, primarily in urban areas.
- The distance between communities can make walking and bicycling impractical for intercommunity and/or regional connections.
- Availability and effectiveness of maintenance, especially in the winter, for pedestrian and bicycle facilities varies across the state.

LOOKING AHEAD:
- Continue investment in active transportation infrastructure to enhance connectivity between modes, close gaps in the active transportation network, better serve disadvantaged populations, contribute to a reduction in motor vehicle-related bicycle and pedestrian injuries and fatalities, and improve public health.
- Develop statewide dataset of pedestrian and bicycle facilities volumes and crashes to facilitate planning.

Transit
CURRENT CONDITIONS:
- Public transportation plays a vital role in the state transportation network, especially for transportation-disadvantaged populations.
- Many public transportation trips connect to another mode. That could be walking or biking to a local public transportation stop or connecting to regional options such as rail, ports, ferries, or buses.
- Providing time-competitive services in the face of low-density land use patterns and significant travel distances is a challenge.
- Ridership is trending downward.

LOOKING AHEAD:
- Promote and encourage ridership.
- Improve connectivity to other modes, including active transportation, rail and ferries and ports.
- Seek opportunities for new or expanded local and state funding sources to match and leverage federal funding.
Aviation
CURRENT CONDITIONS:
• Alaska’s airports support the movement of people and commerce in ways that roads support similar services in most other states.
• More than 80 percent of Alaskan communities are inaccessible by the road system and depend on air access to provide basic needs.
• TSAIA and FAI are bright spots in the economy and moving freight and people but outside of major cities, lack of local supplies and infrastructure makes airport operations and maintenance challenging.
• Remoteness, logistical challenges, and high associated costs make rural and remote airports less resilient.
• The federal Alaska Bypass Mail and Essential Air Service programs play significant roles in ensuring minimum levels passenger and freight service at lower costs.

LOOKING AHEAD:
• Continue to identify opportunities to leverage Alaska’s ideal geolocation (specifically Anchorage and Fairbanks) within the worldwide aviation system.
• Identify critical freight system airports for freight-specific improvements.
• Continue to focus on aviation reliability, service, and safety management by evaluating deficiencies and strategically prioritizing improvements with consideration to rural airports that serve communities who do not have redundant transportation options.

Marine & Waterways
CURRENT CONDITIONS:
PORTS
• In 2019, Alaska ranked number 28 in the country for volume of goods shipped, at 37,488,000 short tons of cargo. Most of this tonnage was petroleum products shipped to the ports of Tacoma and San Francisco.
• Valdez is the largest shipping port. The Port of Nikiski is next, followed by the Port of Alaska, DeLong Mountain Regional Transportation System (Red Dog Mine), and Port of Unalaska (seafood).
• A major challenge facing ports is decreasing shipping volumes. One of the causes for the decrease is the reduction in oil production on the North Slope.
• Many ports lack strong multimodal connections to transfer goods from the port to the community.

AMHS
• The Alaska Marine Highway System (AMHS) provides marine transportation services to connect coastal communities.
• Ferry volumes have been declining for roughly a decade.
• Since 2015 AMHS ferry schedules have varied from year to year, based on available funding levels and operating budgets.
• Reliability has also been an issue related mechanical failures due to the aging fleet and weather delays.

LOOKING AHEAD:
• Monitor shipping in the Northwest Passage to leverage Alaskan ports as interim stops.
• Enhance multi-modal connections from ports and harbors for more efficient transfer of people and goods between modes.
• Continue to improve system reliability of the AMHS.
• Identify strategies to increase AMHS revenue and stabilize funding.
**Railroad**

**CURRENT CONDITIONS:**
- The Alaska Railroad Corporation (ARRC) is a State-owned corporation that is operated like a private business and is not under the purview of ADOT&PF.
- The rail system plays an essential role in the tourism and transporting goods, with freight revenue generating more than half its operating revenues.
- Rail yards in Seward, Whittier, Anchorage, and Fairbanks serve as centralized distribution hubs rely on a strong roadway and marine network.
- The downturn in freight and tourism revenues has put pressure on the ARRC’s ability to earn sufficient revenues to both operate service and adequately maintain the railroad.

**LOOKING AHEAD:**
- Continue to engage in discussions to coordinate upgrades and expansion of the rail system to maintain existing infrastructure and provide new services.
- Enhance multi-modal connections from rail facilities for the more efficient transfer of people and goods between modes.

---

**Balancing Modal Investments**

**CURRENT CONDITIONS:**
- Several large-scale economic development projects have the potential to influence population, economic growth, employment, and transportation needs and funding if they come to fruition.
- The cost of constructing and maintaining transportation infrastructure is high, especially outside major urban population centers. In some cases, environmental impacts from new facilities and climate change impacts to existing facilities are driving costs higher and threatening existing infrastructure.
- Uncertainty presents challenges in planning for the state’s future transportation needs.

**LOOKING AHEAD:**
- Prioritize the intermodality of the transportation system, including balancing investments between all essential services—air, road, and sea—so every Alaskan can efficiently transport themselves and their goods to meet their everyday needs and keep the economy strong.

---

**Finding Additional Funding Sources**

**CURRENT CONDITIONS:**
- Alaska’s constitution largely prohibits dedication of funds, which makes it challenging to ensure that funds generated to support transportation infrastructure are in fact appropriated to that use.
- For the most part, the fiscal situation does not benefit significantly from population and economic growth. Most revenue is derived from the oil and gas industry either directly or indirectly (through the Permanent Fund).
- Alaska’s oil revenue is declining and funding sources for transportation improvements are largely dependent on federal dollars.

**LOOKING AHEAD:**
- Seek additional funding sources for transportation infrastructure, including public-private partnerships and perhaps road usage charges.
CONTENTS

INTRODUCTION .................................................................................................................................................................................................................. 1

PLANNING CONTEXT .................................................................................................................................................................................................................. 2

Alaska’s Cultural and Geographic Regions .................................................................................................................................................................................. 3

Northwest & Arctic—Inupiaq Region .................................................................................................................................................................................. 4

Yukon Kuskokwim (Y-K) Delta—Yup’ik/Cup’ik Region .................................................................................................................................................. 4

Southwest—Aleut and Alutiq Region .................................................................................................................................................................................. 4

Southcentral—Athabascan, Chugach, and Eyak Regions ............................................................................................................................................. 4

Interior—Athabascan Region ..................................................................................................................................................................................... 5

Southeast—Tlingit, Tsimshian, and Haida Region ..................................................................................................................................................... 5

Climate & Environment ...................................................................................................................................................................................................... 6

Climate .............................................................................................................................................................................................................................. 6

Air Quality .................................................................................................................................................................................................................. 8

Fish & Invasive Species ................................................................................................................................................................................................... 10

Emerging Technology ........................................................................................................................................................................................................ 11

Applications of Emerging Technology ......................................................................................................................................................................... 12

• Fiber Optic Networks/5G Cellular Networks .............................................................................................................................................. 13

• Automated Vehicles (AVs) .................................................................................................................................................................................. 13

• Crowd-Sourced Data and Big Data Analytics .................................................................................................................................................. 14

• Unmanned Aerial Systems (UAS) .................................................................................................................................................................... 14

Key Challenges and Opportunities Related to Emerging Technologies .................................................................................................................................................................................. 16

Population & Economy ......................................................................................................................................................................................................... 17

Population .................................................................................................................................................................................................................. 17

Cost of Living ........................................................................................................................................................................................................... 20

Economic Activity ...................................................................................................................................................................................................... 27

Future Statewide Economic Development Projects .................................................................................................................................................. 31

Fiscal Outlook .............................................................................................................................................................................................................. 32
## TRANSPORTATION ASSESSMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision</td>
<td>43</td>
</tr>
<tr>
<td>Road System Overview</td>
<td>45</td>
</tr>
<tr>
<td>Vehicle Miles Traveled (VMT)</td>
<td>54</td>
</tr>
<tr>
<td>Annual Average Daily Traffic (AADT)</td>
<td>54</td>
</tr>
<tr>
<td>Travel Time Reliability and Emissions Performance Measures</td>
<td>56</td>
</tr>
<tr>
<td>Truck Traffic</td>
<td>57</td>
</tr>
<tr>
<td>Pavement and Bridge Conditions</td>
<td>63</td>
</tr>
<tr>
<td>Highway Infrastructure Condition Performance Measures</td>
<td>70</td>
</tr>
<tr>
<td>Highway Safety</td>
<td>71</td>
</tr>
<tr>
<td>Roadway System Key Trends, Challenges, and Opportunities</td>
<td>76</td>
</tr>
<tr>
<td>Active Transportation</td>
<td>78</td>
</tr>
<tr>
<td>The Alaska Statewide Active Transportation Plan (ASATP)</td>
<td>79</td>
</tr>
<tr>
<td>Safe Routes to Schools</td>
<td>79</td>
</tr>
<tr>
<td>Rural Communities</td>
<td>79</td>
</tr>
<tr>
<td>Funding</td>
<td>79</td>
</tr>
<tr>
<td>Performance Measures</td>
<td>81</td>
</tr>
<tr>
<td>Active Transportation Key Trends, Challenges, Threats and Opportunities</td>
<td>82</td>
</tr>
<tr>
<td>Transit</td>
<td>84</td>
</tr>
<tr>
<td>Revenue and Ridership Trends</td>
<td>88</td>
</tr>
<tr>
<td>Transit Key Trends, Challenges, and Opportunities</td>
<td>93</td>
</tr>
<tr>
<td>Aviation</td>
<td>94</td>
</tr>
<tr>
<td>Rural Airport System</td>
<td>94</td>
</tr>
<tr>
<td>Aviation Key Trends, Challenges, and Opportunities</td>
<td>101</td>
</tr>
<tr>
<td>Marine &amp; Waterways</td>
<td>106</td>
</tr>
<tr>
<td>Alaska Ports</td>
<td>106</td>
</tr>
<tr>
<td>Port Key Trends, Challenges, and Opportunities</td>
<td>112</td>
</tr>
<tr>
<td>Alaska Marine Highway System (AMHS)</td>
<td>112</td>
</tr>
<tr>
<td>AMHS Key Trends, Challenges, and Opportunities</td>
<td>120</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Historical and Projected Changes in Population, 2000 to 2050 .......................................................... 17
Table 2. Projected Change in Occupational Employment, 2018–2028 ............................................................... 30
Table 3. Interstate Designations and Roadway Names ....................................................................................... 46
Table 4. NHS Intermodal Connectors in Alaska ................................................................................................. 47
Table 5. Federal Performance Measures for Travel Time Reliability, Congestion, and Emissions .................. 56
Table 6. Average Daily Truck Volumes, Selected Roadway Segments, 2019 ................................................... 61
Table 7. 2020 Truck Travel Time Performance Measure Summary ............................................................... 63
Table 8. DOT&PF Highway & Roadway Pavement Status (2019) ................................................................. 64
Table 9. NHS Pavement Condition Comparison: 2015-2020 ......................................................................... 65
Table 10. Infrastructure Condition Performance Measures Summary .......................................................... 70
Table 11. Progress on Performance Targets (five-year moving average) ...................................................... 75
Table 12. ASATP Performance Measures ....................................................................................................... 81
Table 13. Public Transportation Services ..................................................................................................... 86
Table 14. Part 139 Certificated Airports ......................................................................................................... 95
Table 15. Alaska Airport System Classifications ............................................................................................ 97
Table 16. Airports by Passenger Enplanements ............................................................................................... 99
Table 17. All-Cargo Airports Landed Weight ................................................................................................. 100
Table 18. Summary of AMHS Ferry Fleet .................................................................................................. 117
Table 19. Historical Traffic Volume vs. Ship Weeks Scheduled ................................................................. 119
APPENDICES

A. Compliance Checklist
B. Existing Plans Summary
INTRODUCTION

To plan for tomorrow, it’s important to understand what’s happening today. The first step in developing Alaska Moves 2050 was a planning-level assessment of each transportation mode. This assessment identifies key issues and trends that may shape the future transportation system.

This technical memorandum presents the initial findings of the assessment. It presents statewide performance trends and indicators based on readily available data for the separate programs and infrastructure assets listed below.

While the report is organized by topic, it’s important to remember Alaska's transportation assets and programs are part of an integrated system. This connected system requires DOT&PF to keep in mind all potential transportation users, their communities and environmental contexts, and how they move between modes when making choices about how to invest resources, implement programs, or develop projects.
PLANNING CONTEXT

Many modes are engaged to move people and goods efficiently for every Alaskan, every day. Within Alaska's 571,641 square miles, 82 percent of communities are not accessible by road.

The LRTP/FP focuses heavily on the intermodal nature of the DOT&PF-owned and managed transportation system. Appendix A: Compliance Checklist contains federally-mandated elements of a long-range transportation plan, while Appendix B: Existing Plans Summary contains an overview of the documents reviewed to inform this assessment.

Figure 1. DOT&PF By the Numbers
Alaska’s Cultural and Geographic Regions

The diverse geographical areas DOT&PF serves have inherent challenges and a diverse population, including Alaska Natives, who have inhabited their communities for thousands of years and still depend on the land for their subsistence lifestyle (Figure 2). Many communities within Alaska’s 571,641 square miles are not accessible by road. These communities can be reached only by air, sea, river, or overland using ATVs, snow machines, or even sled dogs.

Figure 2. Alaska’s Cultural and Geographic Regions
Northwest & Arctic—Inupiaq Region
This region is made of 54 communities as well as the North Slope oil fields. Most of the communities are small (25-800 residents) and served by the larger hub communities, including Kotzebue, Nome and Utqiagvik. Communities are accessible year-round primarily by air. There are no permanent interconnecting community roads; however, ice roads and snow roads serve an important role in connectivity during winter months. Where possible, land travel is also accomplished over trails by snow machine or ATV. Year-round freight is by air cargo and most communities on the west coast are able receive summer barge freight service. The lack of interconnected roads means lighter goods, such as mail and perishable food, typically move by air. Bulkier, heavier materials like dry goods, fuel, and building materials arrive by ocean-going barge. Access for the north slope oil fields is via the 414 mile Dalton Highway, a gravel service road paralleling the Trans Alaska Pipeline System (TAPS) that links Prudhoe Bay to the public highway systems. The Dalton Highway serves mainly as a freight corridor to the oil fields and a summer excursion route for tourists. Subsistence is central to the region’s economy.

Yukon Kuskokwim (Y-K) Delta—Yup’ik/Cup’ik Region
The Y-K Delta is one of the largest in the world, stretching across 59,000 square miles. The region includes 56 remote communities. The largest hub community is Bethel, which is home to approximately 6,300 residents. Y-K Delta residents use a system of airports, rivers, ports, barge landings, and trails for transportation to, from, and within the region. Transportation choices vary by season. Given the lack of inter-village roads and the wet, lowland conditions in much of the region, overland travel is not common. In the summer months, river transportation is by skiff or small boat, with barges bringing in fuel and freight. In winter months, river travel is by snow machine, dog sled, or passenger vehicle (via ice roads and winter trails). In colder months, fuel and freight must be flown in, as barges are unable to navigate the frozen rivers.

Southwest—Aleut and Alutiq Region
The Southwest Region stretches over 1,000 miles into the Pacific Ocean. This largely maritime region is home to some of the most productive fishing grounds in the world—Bristol Bay, the Bering Sea, and the Gulf of Alaska. The fishing industry is the basis for a significant portion of the regional economy. The region includes approximately 40 communities that are not connected to the National Highway System (NHS) or, for the most part, one another. The transportation system comprises airports; paved and gravel roads; ATV trails and winter snow machine trails; board roads/boardwalks; river channels; and the Pacific Ocean. Walking and biking are common modes of transportation. People living here receive their daily goods, fuel, food, vehicles, building supplies, and other domestic goods via barge delivery or air transport.

Southcentral—Athabascan, Chugach, and Eyak Regions
The Southcentral region is home to about 65 communities, most connected via the roadway system, with the exception of Cordova and several smaller communities in Prince William Sound. The area includes more than half the state’s population and is made up of Cook Inlet, the Matanuska-Susitna Valley, the Kenai Peninsula, Prince William Sound, and the Copper River Valley. It has the fastest growing area in the state, the Matanuska-Susitna Borough, and is home to Joint Base Elmendorf Richardson (JBER). Anchorage is the largest city and transportation hub for multimodal connections to the rest of the state. People and goods move via a network of highways, airports, ferries, rail, and marine freight. This region includes the Port of Alaska, through which 90 percent of the state’s goods pass; Ted Stevens Anchorage International Airport (ANC), one of the world’s busiest cargo airports; and the terminus of the TAPS in Valdez. Transportation, tourism, fisheries, and petroleum production are important economic activities in the region.
Interior—Athabascan Region

Though Fairbanks is the economic hub of activity in the Interior, there are about 50 other communities in the region, many of which can be accessed by the highway system. Communities not on the road system rely on barges and air travel. This region is also home to Eielson Air Force Base, Fort Wainwright, and Fort Greely. The interior region has two international border crossings, 36 state-owned public airports, including Fairbanks International Airport (FAI), over 1,100 miles of national highways and about 800 miles of state highways. The Alaska Railroad also provides service between Anchorage and Fairbanks. Rich deposits of silver, gold, copper, lime, nickel, platinum, palladium, gravel, coal, and other minerals are mined in the region. In addition to resource development, tourism is important to the economy.

Southeast—Tlingit, Tsimshian, and Haida Region

This 500-mile long maritime area is home to 35 communities. Residents are distributed throughout the region in isolated communities on the mainland and major islands, separated by the mountains and waters of the inside passage. The Alaska Marine Highway System (AMHS) and air service play the most important role in providing transportation to passengers and vehicles between communities in the southeast. Only three communities in the region—Haines, Skagway, and Hyder—have road connections to the continental highway system. Roads are the primary way to get around within communities, using short highway segments for local travel. Barge operators and air carriers carry the bulk of freight. Federal and state government, fishing, and tourism are the region’s top contributors to the economy.
Climate & Environment

Transportation system infrastructure affects both the natural and human environments. In turn, changes in the climate and environment can impact the safety, mobility, and resiliency of transportation systems.

All federally-funded or federally-involved transportation-related activities require an environmental analysis to comply with the National Environmental Policy Act (NEPA) and applicable state and federal standards.

Factors that have a strong correlation to transportation systems operations and maintenance are summarized below.

Climate

As the global climate has changed in recent decades, arctic and subarctic areas have shown a more rapid shift. Temperatures in arctic areas have increased approximately twice as much as the global average over the last 30 years. The impacts are increasing the cost of construction and repair efforts needed to maintain infrastructure for all modes, but particularly roadways and airfields.

Impacts of the warming trend vary in different parts of the state. In interior areas, permafrost thaw and subsidence is generally the most noticeable issue.

“Drunken Forest.” Source: U.S. National Park Service
Figure 3 shows generalized permafrost distribution across the state. The phenomenon known as drunken trees, visible around the Fairbanks area, is the clearest indicator of permafrost subsidence. When permafrost melts, the consistently frozen soil that remains becomes very soft. For roads, runways, and pads, this results in heaves, shifts, slumps, and sinkholes. 

**Figure 3 Permafrost in Alaska**

Source:
Permafrost Map of Alaska, USGS (Fairbanks, 1965).
In the northern and western areas of the state, while permafrost thaw is a concern, coastal erosion is a bigger challenge. Coastal erosion appears to be tied to reduced sea ice cover. Without the ice armoring the shore, storm surges cause the shoreline to recede at an alarming rate: 1.4 meters per year, on average, with some areas experiencing as much as 20 meters per year. Several villages, including Newtok, Shishmaref, and Kivalina, are considering relocation to higher ground, which requires new transportation systems internal to the communities, evacuation routes, airports, and associated infrastructure. The southern portions of the state are most impacted by the increasing storm intensity, with stronger winds or more precipitation. Record rainfalls are leading to flooding and landslides, as experienced in Haines in December 2020.

Climate change is also resulting in the retreat of glacial ice, which causes increased flooding, changing water courses, and in the case of Valdez, the lower river floodplain has been aggregating up to 3 inches of glacial gravel per year that has to be managed to protect land uses and bridges.

Air Quality

Air quality is a localized issue. Poor air quality can be caused or exacerbated by the transportation system and its use. Air quality is regulated nationally under the Clean Air Act (1972), which designates National Ambient Air Quality Standards for a range of pollutants.

Air quality issues are typically seasonal, with summer and winter pollutant concentrations. In winter, carbon monoxide (CO) levels increase dramatically in Urbanized Areas, particularly in Fairbanks, where the bowl-like topography and frigid air create temperature inversions that reduce air flow and concentrate the city’s emissions. Cold starts and engine idling during warmup contribute to higher CO levels, as does vehicle queueing at signalized intersections.

DOT&PF has identified problem intersections in Anchorage and Fairbanks and implemented solutions to increase traffic flow as a means of decreasing CO concentrations. As a result, Anchorage has not exceeded the regulatory CO threshold since 1996, and Fairbanks has not exceeded the threshold since 1999.

In rural areas, gravel and dirt roads are exposed after spring thaw and breakup. As these surfaces dry, airborne particulate matter of 10 microns or less (PM10) becomes more prevalent as vehicles disturb the dry road surface. Particulate matter of 2.5 microns or less (PM2.5), generally caused by wood smoke and biofuel burning, is also a concern. Exposure to fine particles can cause short-term health effects such as eye, nose, throat and lung irritation, coughing, sneezing, runny nose, and shortness of breath. Long-term exposure can affect lung function and worsen medical conditions such as asthma and heart disease.

The Alaska Department of Environmental Conservation monitors for PM2.5 in Fairbanks, North Pole, Anchorage, Butte, and the Mendenhall Valley area of Juneau. Only Fairbanks and North Pole currently have designated air quality control boundaries (non-attainment areas) for PM2.5 concentrations.
Figure 4. PM10 Problem Areas, CO² Areas, and PM2.5 Monitor Locations

Fish & Invasive Species

As the temperate, subarctic and arctic environments warm, a broader range of non-native species have successfully colonized some of Alaska’s ecosystems. There is a correlation between Alaska’s surface transportation system and the prevalence and spread of non-native species. Primary spread patterns for invasive plants are along rivers and roads, exemplified by the thick ground cover of bird vetch (Vicia cracca) along highway and major arterial embankments, or the presence of European bird cherry (Prunus padus) along many Anchorage waterways. DOT&PF tries to minimize introduction and spread of invasive species by requiring a mix of approved native seed to be applied to road embankments to slow the spread of invasive species.

In addition to the surface transportation network, aquatic species may be spreading by hitching rides on boats or floatplanes. Elodea (Elodea canadensis) is a non-native plant that was first found in Alaska in 1982. These species can adversely impact important fish resources.

Freshwater and saltwater fish, including the many species of Pacific salmon, contribute significantly to the economy through commercial and sportfishing as well as supporting subsistence needs. Some Alaskan waterways have seen impacts to historic salmon populations that correlate to development pressures, including urbanization and increased surface impermeability, and construction of dams and reservoirs.

The Alaska Exotic Plants Information Clearinghouse is a database of non-native plants hosted by University of Alaska Anchorage. Most non-native plants are considered invasive.
These impacts result from:

- Constriction of waterways and flood plains through bridges or culverts, as these structures typically do not account for the entire width of a waterway’s flood margin. Over the past decades, improvements to design criteria have led to increases in culvert size and improvements in substrate grade and material specifically to address fish passage.

- Increased sediment contributions to waterways at concentrated stormwater outfalls, even with regular maintenance.

- Chemical inputs from roadway vehicles. These have recently been linked to salmon mortality near heavily urbanized areas following significant rainfall.

Emerging Technology

Emerging transportation technologies encompass a broad range of evolving applications of science, engineering, and social organization that have the potential to transform how people and institutions use land and transportation systems in urban and rural settings. Examples of emerging technologies include fiber optic networks and 5G communications, connected and automated vehicles, mobility as a service, big data analytics, and electrification. Individually and together, these emerging technologies are changing the ways people, goods, and information move.

Understanding emerging technologies and accounting for them in the long-range planning process enables Alaska to develop reasonable expectations for the types, timelines, and impacts of technologies that are expected to impact the state. The potential impacts are subject to technology development, market direction, and policy guidance. The transportation planning process must adapt as technologies develop and markets evolve. Technology applications are best implemented when and where they are used to achieve statewide goals.
Figure 6. Implementing Technology Applications

Technology applications are best implemented when and where they...

- Reduce the monetary cost of travel compared to other modes of travel
- Reduce the time cost of travel compared to other modes of travel
- Increase system efficiency
- Create new travel options (such as new transit connections or telework)

Applications of Emerging Technology

The following section highlights existing emerging technology applications being used by DOT&PF and its partners.

- **Intelligent Transportation Systems (ITS).** ITS apply sensing, analysis, control, and communications technologies to transportation infrastructure, vehicles, and users to improve safety, mobility, and efficiency. ITS are used to ease congestion, improve traffic management, minimize environmental impacts, and improve user experience. DOT&PF has implemented several advanced ITS that are essential for efficient management of facilities and equipment, such as:
  - **Traffic Management Center (TMC) Remote Access.** DOT&PF staff have remote access to traffic signal controllers and traffic camera feeds enabling live tracking, equipment diagnostics, and signal timing adjustments.
  - **Alaska 511 Traveler Information System.** Travelers have access to real-time weather and condition reports along the road system, including livestream camera and video feeds, accessible via phone, website, apps, and social media. DOT&PF also uses portable message boards (PMBs) along remote highways to inform travelers in areas with limited cell phone coverage of upcoming hazards. Messages are updated in real time from maintenance stations through PMB software.
  - **Road Weather Information System (RWIS) Network.** Data stations along major transportation corridors provide real-time data via an online map. Data vary but generally include atmospheric information, precipitation accumulation, camera feeds, and pavement surface and subsurface temperature observations.
- **Smart Snowblower/Snowplow.** GPS- and radar-based systems are used on snow-removal vehicles to aid in navigation and collision avoidance along the Richardson Highway in Thompson Pass.

- **Online Tracking/Ticketing Systems.** The AMHS has developed an online vessel tracking system to display real-time vessel arrival and departure information for passenger planning purposes. Where fixed transit service is available, technology is increasingly incorporated into the passenger experience, including mobile ticketing/electronic payment, real-time tracking of buses from a hand-held device or computer, and online trip planning capabilities.

- **Fiber Optic Networks/5G Cellular Networks.** Fiber optic and 5G cellular technologies form the high-speed communications backbone required to support the large quantities of data produced and analyzed for connected and automated vehicles, traffic management systems, and other emerging technologies. Fiber optic networks are expanding, including the first solely land-located connection between Alaska and the contiguous United States, completed in May 2020.

- **Automated Vehicles (AVs).** AVs encompass a wide variety of technologies and applications across all modes. In recent years, there has been significant industry focus on the development and pilot testing of cars, buses, and trucks capable of performing some or all driving functions, with the goals of increasing system safety and efficiency. While connected and automated vehicles...
(CAVs) have gained much attention for their recent advancements, it will likely still be decades before widespread adoption and market penetration will significantly alter travel demand patterns, though advanced driver assistance technologies are becoming more widespread. DOT&PF recently completed a CAV readiness research report, which concluded that “Alaska is at an early stage of CAV readiness” based on the U.S. Department of Transportation (USDOT) Transportation Systems Management and Operations (TSMO)/CAV Capability Maturity Model framework viii. DOT&PF is currently developing a framework plan for CAV readiness including the identification of potential pilot projects.

- **Electrification.** In recent years, battery technology has evolved to reserve more power, charge more quickly, and maintain a longer use cycle, resulting in lower-cost electric vehicles (EV) and increased larger vehicle electrification applications (buses, trucks, ferries, etc.). Demand for charging infrastructure is likely to increase in coming years.
  - EV charging infrastructure (EVCI) is available at several private businesses in Anchorage, Palmer, Wasilla, and Fairbanks. Juneau has both private and public EVCI locations. ix The Alaska Energy Authority has dedicated funds from the State Energy Program (SEP) towards establishing an Alaska Electric Vehicle Working Group and installing charging stations at state-owned facilities. x Additionally, federal Congestion Mitigation and Air Quality (CMAQ)-funded plug-in infrastructure can double as low-power vehicle charging.
  - Private EV charging stations that are open for public use are located sporadically along the Parks Highway as far north as Denali State Park.
  - Juneau’s first electric transit bus entered service in March 2021, and the city plans to replace its entire fleet of 18 buses with battery-powered vehicles.
  - The Municipality of Anchorage tested cold-weather battery performance and charging operations using an electric/battery-powered bus in 2018.
  - Tok Transportation has replaced one diesel school bus with an electric/battery-powered model funded by an Alaskan Energy Authority grant.

- **Crowd-Sourced Data and Big Data Analytics.** As the telecommunications industry advances, it enables the collection of crowd-sourced data, in areas such as origin-destination, traffic conditions, and infrastructure conditions. Aggregated and anonymized, over time this data can be used to better inform modelling, planning, operations, and design.

- **Unmanned Aerial Systems (UAS).** A variety of UAS, hybrid airships, and vertical takeoff and landing (VTOL) unmanned cargo aircraft are currently being developed. These technologies are being tested in Alaskan communities because they have the potential to operate at remote and inaccessible locations. Private companies and DOT&PF are increasingly using drones or UAS technologies to conduct infrastructure inspections and collect data.xi These modes of air transportation require only a fraction of the infrastructure development needed to support conventional aviation modes. xii
Figure 8. Electric Charging Station Infrastructure
Key Challenges and Opportunities Related to Emerging Technologies

CHALLENGES

- Reliability and costs associated with key infrastructure needs, specifically electricity and internet, varies significantly between urban, rural, and remote areas, and will be a barrier to widespread implementation.
- Inconsistent cellular data coverage limits continuous communication and data collection and analysis.
- Extreme weather conditions challenge the capabilities of many current emerging technologies, such as automated driving system sensors and EV battery range.
- Limited state and local funding is available for pilot projects to apply new technologies.

OPPORTUNITIES

- Alaska Moves 2050 is the first Alaska LRTP/FP to fully incorporate performance-based planning, which better equips DOT&PF to monitor and plan for the impacts of emerging technologies.
- DOT&PF can begin collecting, synthesizing, and maintaining emerging technology data sources (i.e., GIS-based maps of fiber optic network, EV charging infrastructure, alternative fuel stations, etc.).
- It will be possible to build on advancements and lessons learned by peer states based on current pilot projects and infrastructure investments.\textsuperscript{xiii}
- DOT&PF can develop goals and policies that are flexible enough to remain valid as new technologies emerge and their impacts are realized.
- The adoption of some technologies may require incentivization, such as publicly-funded electric vehicle charging infrastructure. DOT&PF can monitor to assess whether potential incentives are achieving desired behaviors and adjust the fees or incentives as needed. Agency staff must be empowered to adapt fees or adjust rules in a timely manner, especially at the beginning of project implementation.
- Emerging technologies are generating huge data sets that many public agencies do not yet have the resources to manage. Coordinating across agencies and collaborating with the private sector will help agencies remove data analysis and storage barriers, which will facilitate technology implementation and empower agencies through data-driven decision-making.
Population & Economy

Where people live and how and where they work affects transportation infrastructure design and locations. Employment patterns and industry activity drive the demand for transportation through the movement of people, material inputs, and products.

Population

Alaska is the largest state in the country, encompassing 586,412 square miles of land and 33,904 miles of coastline, yet it has the fourth smallest state population. In 2020, Alaska was estimated to have 728,900 residents. Over the last two decades, the population grew steadily until 2013, when it plateaued. It has been in a slow decline since 2016. Despite the recent decline, the population grew nearly 17 percent from 2000 to 2018, and the Alaska Department of Labor and Workforce Development’s medium forecast shows that it is expected to continue growing from 2020 to 2050.

As with past population growth, different regions are expected to see stronger growth than others. The population centers, primarily the Municipality of Anchorage, Matanuska-Susitna Borough, and Fairbanks North Star Borough, have seen the most growth over the last 20 years and are expected to gain the most population over the next 30. These are areas with more established and connected transportation infrastructure, and that already have high population bases. Areas that are less connected and less populated are expected to remain small and, in many areas, shrink in size. Table 1 summarizes the historical and projected changes in population from 2000 through 2050.

Table 1. Historical and Projected Changes in Population, 2000 to 2050

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Matanuska-Susitna Borough</td>
<td>59,322</td>
<td>107,829</td>
<td>162,171</td>
<td>48,507</td>
<td>81.8%</td>
<td>54,342</td>
<td>50.4%</td>
</tr>
<tr>
<td>Municipality of Anchorage</td>
<td>260,283</td>
<td>290,406</td>
<td>307,276</td>
<td>30,123</td>
<td>11.6%</td>
<td>16,870</td>
<td>5.8%</td>
</tr>
<tr>
<td>Fairbanks North Star Borough</td>
<td>82,840</td>
<td>97,080</td>
<td>108,210</td>
<td>14,240</td>
<td>17.2%</td>
<td>11,130</td>
<td>11.5%</td>
</tr>
<tr>
<td>Kenai Peninsula Borough</td>
<td>49,691</td>
<td>58,671</td>
<td>65,586</td>
<td>8,980</td>
<td>18.1%</td>
<td>6,915</td>
<td>11.8%</td>
</tr>
<tr>
<td>Bethel Census Area</td>
<td>16,047</td>
<td>18,162</td>
<td>23,098</td>
<td>2,115</td>
<td>13.2%</td>
<td>4,936</td>
<td>27.2%</td>
</tr>
<tr>
<td>Kusilvak Census Area</td>
<td>7,028</td>
<td>8,184</td>
<td>11,536</td>
<td>1,156</td>
<td>16.4%</td>
<td>3,352</td>
<td>41.0%</td>
</tr>
<tr>
<td>North Slope Borough</td>
<td>7,385</td>
<td>9,905</td>
<td>12,075</td>
<td>2,520</td>
<td>34.1%</td>
<td>2,170</td>
<td>21.9%</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Nome Census Area</td>
<td>9,196</td>
<td>9,812</td>
<td>11,231</td>
<td>616</td>
<td>6.7%</td>
<td>1,419</td>
<td>14.5%</td>
</tr>
<tr>
<td>Northwest Arctic Borough</td>
<td>7,208</td>
<td>7,642</td>
<td>8,458</td>
<td>434</td>
<td>6.0%</td>
<td>816</td>
<td>10.7%</td>
</tr>
<tr>
<td>Dillingham Census Area</td>
<td>4,922</td>
<td>4,893</td>
<td>5,219</td>
<td>-29</td>
<td>-0.6%</td>
<td>326</td>
<td>6.7%</td>
</tr>
<tr>
<td>Skagway Municipality</td>
<td>862</td>
<td>1,094</td>
<td>1,408</td>
<td>232</td>
<td>26.9%</td>
<td>314</td>
<td>28.7%</td>
</tr>
<tr>
<td>Lake and Peninsula Borough</td>
<td>1,823</td>
<td>1,654</td>
<td>1,866</td>
<td>-169</td>
<td>-9.3%</td>
<td>212</td>
<td>12.8%</td>
</tr>
<tr>
<td>Denali Borough</td>
<td>1,893</td>
<td>1,819</td>
<td>1,927</td>
<td>-74</td>
<td>-3.9%</td>
<td>108</td>
<td>5.9%</td>
</tr>
<tr>
<td>Southeast Fairbanks Census Area</td>
<td>6,174</td>
<td>6,823</td>
<td>6,923</td>
<td>649</td>
<td>10.5%</td>
<td>100</td>
<td>1.5%</td>
</tr>
<tr>
<td>Yakutat City and Borough</td>
<td>808</td>
<td>544</td>
<td>436</td>
<td>-264</td>
<td>-32.7%</td>
<td>-108</td>
<td>-19.9%</td>
</tr>
<tr>
<td>Bristol Bay Borough</td>
<td>1,258</td>
<td>829</td>
<td>695</td>
<td>-429</td>
<td>-34.1%</td>
<td>-134</td>
<td>-16.2%</td>
</tr>
<tr>
<td>Aleutians East Borough</td>
<td>2,697</td>
<td>2,935</td>
<td>2,757</td>
<td>238</td>
<td>8.8%</td>
<td>-178</td>
<td>-6.1%</td>
</tr>
<tr>
<td>Wrangell City and Borough</td>
<td>2,448</td>
<td>2,402</td>
<td>2,213</td>
<td>-46</td>
<td>-1.9%</td>
<td>-189</td>
<td>-7.9%</td>
</tr>
<tr>
<td>Aleutians West Census Area</td>
<td>5,465</td>
<td>5,386</td>
<td>5,183</td>
<td>-79</td>
<td>-1.4%</td>
<td>-203</td>
<td>-3.8%</td>
</tr>
<tr>
<td>Haines Borough</td>
<td>2,392</td>
<td>2,471</td>
<td>2,220</td>
<td>79</td>
<td>3.3%</td>
<td>-251</td>
<td>-10.2%</td>
</tr>
<tr>
<td>Hoonah-Anoogon Census Area</td>
<td>2,574</td>
<td>2,122</td>
<td>1,786</td>
<td>-452</td>
<td>-17.6%</td>
<td>-336</td>
<td>-15.8%</td>
</tr>
<tr>
<td>Juneau City and Borough</td>
<td>30,711</td>
<td>32,000</td>
<td>31,572</td>
<td>1,289</td>
<td>4.2%</td>
<td>-428</td>
<td>-1.3%</td>
</tr>
<tr>
<td>Petersburg Borough</td>
<td>4,260</td>
<td>3,229</td>
<td>2,774</td>
<td>-1,031</td>
<td>-24.2%</td>
<td>-455</td>
<td>-14.1%</td>
</tr>
<tr>
<td>Prince of Wales-Hyder Census Area</td>
<td>6,125</td>
<td>6,140</td>
<td>5,574</td>
<td>15</td>
<td>0.2%</td>
<td>-566</td>
<td>-9.2%</td>
</tr>
<tr>
<td>Yukon-Koyukuk Census Area</td>
<td>6,510</td>
<td>5,100</td>
<td>4,345</td>
<td>1,410</td>
<td>-21.7%</td>
<td>-755</td>
<td>-14.8%</td>
</tr>
<tr>
<td>Ketchikan Gateway Borough</td>
<td>14,067</td>
<td>13,709</td>
<td>12,917</td>
<td>-358</td>
<td>-2.5%</td>
<td>-792</td>
<td>-5.8%</td>
</tr>
<tr>
<td>Valdez-Cordova Census Area</td>
<td>10,195</td>
<td>9,408</td>
<td>8,381</td>
<td>-787</td>
<td>-7.7%</td>
<td>-1,027</td>
<td>-10.9%</td>
</tr>
<tr>
<td>Sitka City and Borough</td>
<td>8,835</td>
<td>8,407</td>
<td>7,305</td>
<td>-428</td>
<td>-4.8%</td>
<td>-1,102</td>
<td>-13.1%</td>
</tr>
<tr>
<td>Kodiak Island Borough</td>
<td>13,913</td>
<td>12,910</td>
<td>11,332</td>
<td>-1,003</td>
<td>-7.2%</td>
<td>-1,578</td>
<td>-12.2%</td>
</tr>
</tbody>
</table>

Source: Alaska Department of Labor and Workforce Development (2020), Northern Economics, Inc.
Figure 9 shows the share that each of the larger boroughs and census areas are expected to have of the state’s overall population in 2050. Though its share is expected to decline, the Municipality of Anchorage will remain the largest area, with 37.2 percent of the state’s population. The Matanuska-Susitna Borough is expected to more than double its share from 2000 (9.5 percent), reaching 19.6 percent of the population in 2050. Fairbanks North Star Borough and Kenai Peninsula Borough are expected to remain steady, while the City and Borough of Juneau, Bethel Census Areas, and all other boroughs and census areas are projected to lose population share.

Figure 9. Boroughs and Census Areas as a Share of the State’s Population, 2000 to 2050
Cost of Living

Alaska is known for its high cost of living, particularly in communities that are off the road system. Figure 10 draws on a December 2018 survey that tracked weekly food costs in selected communities. It shows food costs for a family of four, indexed to the U.S. average (equal to 100). Of the communities surveyed, Fairbanks had the lowest food cost (138, or 38 percent higher than the U.S. average), Southcentral communities had a food cost of 141, and communities located farther away from the Railbelt had increasing relative costs. Bethel had the highest food cost, with an index value of 266.

Figure 10. Food Cost for a Family of Four Relative to U.S. Average, by Alaska Community, December 2018

Source: University of Alaska School of Natural Resources & Extension (2019 xvii) and Northern Economics, Inc. analysis
Energy costs for home heating and electricity generation are likewise high in Alaska, and again, especially so for communities off the road system and without access to natural gas. Figure 11 shows the price for a gallon of fuel oil for electricity generation, based on Alaska Energy Authority (2020) modeling of rural and urban communities that use fuel oil. For communities defined as urban, prices averaged $2.48 per gallon, but in rural communities, fuel oil cost an average of $3.40 per gallon and peaked at $7.18 per gallon in some communities.

Figure 11. Price per Gallon of Fuel Oil for Electricity Generation, 2020

Source: Alaska Energy Authority (2020) and Northern Economics, Inc. analysis

Note: Urban communities include Fairbanks, Juneau, Ketchikan, Kodiak, Petersburg, Sitka, and Wrangell. These are communities that use fuel oil for electricity generation because they do not have access to piped natural gas. Rural communities include the remainder of the state, except for Railbelt communities that do not use fuel oil for electricity generation.
Compared with the fuel oil used in most of the state (by land area), natural gas is significantly less expensive per unit of energy. This is largely driven by the transportation cost associated with shipping small quantities of fuel oil in tanks to communities on the coasts and rivers, often limited to the months of the year that are ice-free. Natural gas is priced based on a contract specifying a delivery location, with the cost to users based on that base gas price plus pipeline transportation and administrative costs. In 2020, the contract price for natural gas was $7.50 per MMBtu. After adjusting from a volume basis to an energy content basis, rural fuel oil averages 3.3 times the cost of natural gas, while urban fuel oil is 2.4 times as expensive (Figure 12).

Figure 12. Fuel Price Comparison for Electricity Generation, Based on Cost per Energy Content

Fuel oil prices for electricity generation are expected to continue to grow. Alaska Energy Authority’s (2020) modeling of fuel oil prices in rural communities is shown as ranges in Figure 13. The lower band indicates the lower end of the range of projected prices, which are projected to reach $3.14 per gallon in 2045. The upper band shows some communities reaching as high as $8.69 per gallon by that year. The mean price of fuel oil for electricity generation is expected to be $4.38 per gallon in 2045.

Figure 13. Projected Fuel Oil Price for Electricity Generation in Rural Communities, 2020–2045
Figure 14 shows projected fuel oil prices for urban communities. By 2045, fuel oil prices in these communities are expected to reach $2.92 per gallon on the low end and $3.92 per gallon on the high end, with a mean price of fuel oil for electricity generation of $3.34 per gallon.

**Figure 14. Projected Fuel Oil Price for Electricity Generation in Urban Communities, 2020–2045**

Source: Alaska Energy Authority (2020) and Northern Economics, Inc. analysis. Note: Urban communities include Fairbanks, Juneau, Ketchikan, Kodiak, Petersburg, Sitka, and Wrangell. These are communities that use fuel oil for electricity generation because they do not have access to piped natural gas. Rural communities include the remainder of the state, except for Railbelt communities that do not use fuel oil for electricity generation.
Figure 15 shows projected fuel oil price increases in selected communities around the state. Natural gas prices are expected to increase to $10.54 per MMBtu in 2045, a 40.5 percent increase from 2020 (Figure 16). On a per-MMBtu basis, this increase is equivalent to the projected increase in fuel oil prices. Despite the projected increases in fuel prices, many communities around the state have seen a rise in support for renewable energy projects such as wind generation that help counteract the rising cost of energy. The Alaska Energy Authority has offered a matching grant program to help communities fund these projects (Alaska Energy Authority 2020).

Figure 15. Natural Gas Price Projections for 2020–2045

Source: Alaska Energy Authority (2020) and Northern Economics, Inc. analysis
Figure 16. Projected Fuel Prices Change (2020-2050)
Economic Activity

Economic activity, growth in gross domestic product (GDP) and employment, drives demand for transportation infrastructure, and appropriate transportation infrastructure enables economic development. Figure 17 presents federal data, estimated by the U.S. Bureau of Economic Analysis, which include estimates of both employee and sole-proprietor/non-employee jobs and income. From 2001 through 2019, personal income rose from $21.2 billion to $45.9 billion, an increase of 116 percent during a period in which real GDP and total employment rose by only 30 percent and 17 percent, respectively. The figure highlights the plateauing of real GDP and employment since 2014, when the state entered its latest recession. It does not show the drop in economic activity in 2020 as a result of the COVID-19 pandemic, though preliminary data suggest employment has since started to recover.

Figure 17. Personal Income, Real Gross Domestic Product, and Total Employment for Alaska, 2001–2019

Source: Bureau of Economic Analysis (2020)
Alaska’s economy and labor force are highly seasonal, with large swings in employment, particularly in commercial fishing, construction, and tourism. These swings influence transportation demand. For example, increased air travel in coastal communities to support crew changes for commercial fishing and processing; more freight movement on highways, rail, and through marine facilities to support construction activities; and increased demand across all modes to support summer tourism volumes (Figure 18).

Figure 18. Seasonal Tourism Volumes by Arrival Mode
Employment projections by industry for 2018 to 2028 are shown in Figure 18. Employment is expected to grow in the goods-producing industries of natural resources and mining (15.2 percent growth), construction (10.7 percent), and manufacturing (9.9 percent) during this period, indicating potential demand for transportation infrastructure and services. Trade, transportation, and utilities employment is likewise projected to grow by 3.1 percent, which should help serve these needs. Projected growth in other industries, such as leisure and hospitality, points to increased demand in tourism, notwithstanding the impacts COVID-19 had on tourism in 2020 and is expected to have in 2021.

During this same period, employment in farming, fishing, and forestry occupations is expected to grow by more than 28 percent. Table 2 shows employment projections by occupational group. Each industry in Figure 18 can span a variety of occupations in Table 2. For example, transportation and material moving occupations are expected to grow by 5.5 percent, above the 3.1 percent growth expected in all occupations associated with trade, transportation, and public utilities.

Source: Alaska Department of Labor and Workforce Development (2020)
Table 2. Projected Change in Occupational Employment, 2018–2028

<table>
<thead>
<tr>
<th>Occupation Group</th>
<th>Percent Change</th>
<th>Mean Wage ($/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farming, Fishing, and Forestry Occupations</td>
<td>28.7</td>
<td>20.45</td>
</tr>
<tr>
<td>Healthcare Support Occupations</td>
<td>10.9</td>
<td>19.84</td>
</tr>
<tr>
<td>Food Preparation and Serving-Related Occupations</td>
<td>10.4</td>
<td>14.17</td>
</tr>
<tr>
<td>Construction and Extraction Occupations</td>
<td>9.9</td>
<td>31.94</td>
</tr>
<tr>
<td>Architecture and Engineering Occupations</td>
<td>9.0</td>
<td>48.92</td>
</tr>
<tr>
<td>Personal Care and Service Occupations</td>
<td>8.1</td>
<td>15.88</td>
</tr>
<tr>
<td>Healthcare Practitioners and Technical Occupations</td>
<td>7.6</td>
<td>48.91</td>
</tr>
<tr>
<td>Production Occupations</td>
<td>7.4</td>
<td>22.98</td>
</tr>
<tr>
<td>Community and Social Services Occupations</td>
<td>7.3</td>
<td>26.49</td>
</tr>
<tr>
<td>Computer and Mathematical Occupations</td>
<td>6.2</td>
<td>38.40</td>
</tr>
<tr>
<td>Management Occupations</td>
<td>5.5</td>
<td>51.48</td>
</tr>
<tr>
<td>Transportation and Material-Moving Occupations</td>
<td>5.3</td>
<td>27.73</td>
</tr>
<tr>
<td>Installation, Maintenance, and Repair Occupations</td>
<td>4.9</td>
<td>29.45</td>
</tr>
<tr>
<td>Building and Grounds Cleaning and Maintenance Occupations</td>
<td>4.8</td>
<td>16.92</td>
</tr>
<tr>
<td>Office and Administrative Support Occupations</td>
<td>3.7</td>
<td>22.22</td>
</tr>
<tr>
<td>Life, Physical, and Social Science Occupations</td>
<td>3.6</td>
<td>37.72</td>
</tr>
<tr>
<td>Sales and Related Occupations</td>
<td>2.8</td>
<td>18.37</td>
</tr>
<tr>
<td>Protective Service Occupations</td>
<td>2.2</td>
<td>30.16</td>
</tr>
<tr>
<td>Business and Financial Operations Occupations</td>
<td>1.9</td>
<td>36.46</td>
</tr>
<tr>
<td>Education, Training, and Library Occupinations</td>
<td>-0.7</td>
<td>29.44</td>
</tr>
<tr>
<td>Arts, Design, Entertainment, Sports, and Media Occupations</td>
<td>-0.7</td>
<td>26.08</td>
</tr>
<tr>
<td>Legal Occupations</td>
<td>-7.5</td>
<td>45.05</td>
</tr>
</tbody>
</table>

Source: Alaska Department of Labor and Workforce Development (2020) xxxi
Future Statewide Economic Development Projects

Several planned large-scale economic development projects (described below) have the potential to influence population, economic growth, employment, and transportation needs, if they secure funding and are developed. It will be important to consider the impacts these projects may have on the transportation system, which may include increased vehicular and freight traffic (roadway, marine and rail); pavement and bridge condition degradation; travel time impacts; diminished capacity and service; and connectivity between modes.

- **Ambler Mining District and Access.** The Ambler Mining District in Northwest Alaska has an estimated $26 billion resource value over the life of the mines, which will generate additional revenue for the State of Alaska and local governments, according to the Alaska Industrial Development & Export Authority (AIDEA). The mining district is not currently accessible by road, rail, or barge. AIDEA has proposed a 211-mile road from the Dalton Highway to the District. The current proposal assumes a public-private partnership for construction and maintenance of the roadway, which would not be owned or maintained by DOT&PF; however, getting the product to market will require travel on the DOT&PF Dalton Highway and connecting network.

- **Alaska to Alberta Rail (A2A).** This proposed project would construct a railway from Alaska to Alberta, Canada with the intent of transporting resource commodities to global markets via the ports of Southcentral Alaska. The project includes extending the rail lines from Alberta to Tok, Alaska, with a spur line to connect existing rail lines in Delta Junction, Alaska, and adding a new line south to Valdez.

- **Alaska Liquefied Natural Gas (LNG) Project.** The Alaska Gasline Development Corporation proposes an 800-mile-long natural gas pipeline from the North Slope gas fields to a liquefaction plant in Nikiski and on to international markets via the marine terminal.

- **Fort Knox Gold Mine.** The Peak Gold deposit, south of Tok, Alaska, is scheduled to open in 2024. It is short-lived (4.5 years) open pit mine, so the intent is to truck the ore north, approximately 250 miles, to the Fort Knox mill for processing. The trip would involve hauling the crushed ore up the Alaska and Richardson highways, through Fairbanks, and up the Steese Highway to the mine site near Chatanika.

- **Northwest Passage and Arctic Ports.** Arctic ice is retreating to the extent that the Northwest Passage could become an economically viable shipping route. DOT&PF and the U.S. Army Corps of Engineers co-sponsored the Alaska Deep Draft Arctic Ports Study to evaluate potential deepwater port locations in response to increased vessel traffic; however, the study was suspended in October 2015.

- **West Susitna Access.** AIDEA and the Matanuska-Susitna Borough are studying the feasibility of a road that would provide access to development opportunities west of the Susitna River, including mining, agriculture, forest/timber, oil and gas, and recreation.

- **Port MacKenzie Rail Extension.** The Matanuska-Susitna Borough is pursuing construction of a 35-mile rail line in the Susitna River Valley that will connect the port to existing main line tracks at a point between Houston and Big Lake. The rail extension would create a bimodal transportation link between northern Interior Alaska and a deepwater port in Southcentral Alaska.
Fiscal Outlook

Alaska’s fiscal health has long been tied to oil production. As population and government spending have increased over time, petroleum production has declined. With a shifting fiscal environment and no dedicated fund for transportation infrastructure, DOT&PF will continue to face increased challenges in funding capital improvements, operations, and maintenance.

STATE OVERVIEW

The State of Alaska’s total revenue was $8.66 billion in fiscal year (FY) 2020 (Figure 19). Fifty-two percent of that revenue ($4.54 billion) was in unrestricted general funds, while the remainder was in restricted funds, limited to specific uses. While other restricted revenue was negative $554 million in 2020, that was driven by investment losses; $537 million in petroleum revenues were received by the Permanent Fund. Over the next two fiscal years, state revenue is expected to increase to more than $10 billion.

As discussed below, petroleum has accounted for 80 percent of the state’s revenue in the past and is projected to account for two-thirds of its future revenue. Therefore, petroleum plays an outsized role in the state’s fiscal situation, even though petroleum revenues are routed through different accounts, including the Permanent Fund.

Petroleum revenue and motor fuel taxes are of particular interest in a transportation context. Petroleum revenues do not flow directly to DOT&PF, but they do contribute to the state’s General Fund as well as to the corpus of the Permanent Fund, which then provides General Fund money through a regular annual draw. Though the state’s constitution largely prohibits dedication of funds, motor fuel taxes are dedicated to infrastructure under state and federal law.

Petroleum, including both unrestricted and restricted funds, directly accounted for almost 20 percent of Alaska’s FY 2020 revenue (Figure 20). The annual draw from the Permanent Fund, a $2.99 billion portion of the other unrestricted revenue in FY 2020, accounted for an additional 35 percent.
Despite petroleum being a major source of revenue for Alaska, its role has been slowly declining over time as production has fallen from its peak in the late 1980s. Figure 21 shows the state’s declining petroleum revenue from FY 2011 to FY 2021. Starting in FY 2019, the state began a Percent of Market Value draw from the Permanent Fund to fund state government. Production is expected to remain steady over the next decade, though as Prudhoe Bay and the other major fields decline that forecast will become increasingly dependent on new fields and production.

**Figure 21. Alaska North Slope Production, by Production Area, FY 1977 to FY 2030**

Source: Legislative Finance Division (2021)
The state’s petroleum revenue forecast anticipates a decline in 2021–2023, followed by steady and slightly upward trending revenues through 2030 (Figure 22). The forecast is based on projected production volumes as well as a forecast of wellhead oil price.

Figure 22. Unrestricted Petroleum Revenue and Oil Price, FY 2020 Actual and FY 2021–2030 Forecast

Source: Alaska Department of Revenue (2020)
Over the next decade, direct petroleum revenue is expected to account for 65–70 percent of Alaska’s unrestricted General Fund, down from the more than the 80 percent that was seen in 2011–2014 (Figure 23). With the initial Percent of Market Value draw from the Permanent Fund enacted and beginning in 2018, that share has now dropped to approximately 20 percent. While this is a significant diversification of the state’s revenue, the Permanent Fund was created by and continues to be funded by petroleum revenues, so it is important to note that the Permanent Fund may be affected by declines in future oil production in addition to the performance of the fund’s investments.

Figure 23. Unrestricted General Fund Revenue from Petroleum as Percentage of Total, FY 2011–2020 Actual and FY 2021–2030 Forecast

Source: Alaska Department of Revenue (2020) xxxi
Alaska levies a motor fuel tax on fuels for highway use, marine fuel, aviation gasoline, jet fuel, and gasohol. While relevant to transportation, it currently accounts for less than one percent of Unrestricted General Fund revenues. From FY 2011 to 2017, the tax generated revenue of approximately $40 to $45 million annually, but it increased to $47 million in 2018, the most recent year for which data are available (Figure 24). On a per capita basis, the tax revenue has tracked closely with changes in the population, though with an upward trend. It was $64.23 per resident in 2018.

Figure 24. Motor Fuel Tax Revenue and Per Capita Amounts, FY 2011–2018

Source: Alaska Department of Revenue (2020), Alaska Department of Labor and Workforce Development (2020), and Northern Economics, Inc. analysis
Annual vehicle miles traveled (VMT) within Alaska have been growing over the same period, rising from 4.6 billion miles traveled in 2011 to 5.9 billion miles in 2019 (Figure 25). This came after a rise and then fall from 2000 to 2011. On a per capita basis, VMT have followed a similar pattern, though prior to 2011, per capita VMT remained high despite an overall lower total VMT. In 2019, Alaska roads saw an average of 8,045 VMT per resident.

Figure 25. Total and Per Capita Vehicle Miles Traveled (VMT) in Alaska, 2001–2019

Source: Federal Highway Administration (2020) xxxv, Alaska Department of Labor and Workforce Development (2020) xxxvi, and Northern Economics, Inc. analysis
Motor fuel taxes are designated funds under federal and state law. Tax revenue from aviation fuel, both aviation gasoline and jet fuel, are required to be spent in direct support of the airport facilities where the revenue was generated. Alaska Statute designates other motor fuel taxes for specific infrastructure maintenance accounts. An additional fuel surcharge is also collected and set aside for appropriation, even though it is not a designated fund.\textsuperscript{xxxvii}

As of January 2017, Alaska had the lowest combined state and local tax rate on highway fuels.\textsuperscript{xxxviii} There have been multiple attempts to increase the tax rate in recent years.\textsuperscript{xxxix}\textsuperscript{xl} \textsuperscript{xli}

\textbf{DOT&PF OVERVIEW}

DOT&PF receives revenue from state and federal funds as well as user fees. Over the last 10 years (federal fiscal years 2011–2020), federal Airport Improvement Program funding has averaged $221 million, of which 84 percent has gone to DOT&PF and the remainder to local sponsors (Figure 26). The International Airport System has received an average of $45 million annually, while the rural airport system has averaged $140 million annually.

\textbf{Figure 26. Federal Funding of the Airport Improvement Program, Federal Fiscal Years 2000–2020}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure26.png}
\caption{Federal Funding of the Airport Improvement Program, Federal Fiscal Years 2000–2020}
\end{figure}

\textit{Source: Alaska Department of Transportation and Public Facilities (2020)\textsuperscript{xli}}
International Airport System revenues, including passenger facility charges, have averaged $135 million annually (Figure 27). The rural airport system generates much lower revenues, averaging $5.5 million annually but with a clear downward trend over the last decade.

**Figure 27. International Airport Systems’ Revenues, Fiscal Year 2011–2020**

Source: Alaska Department of Transportation and Public Facilities (2020) xlii
Figure 28. International and Rural Airport Systems' Revenues, Fiscal Year 2011–2020

Source: Alaska Department of Transportation and Public Facilities (2020) [xlv]
Another component of DOT&PF, the AMHS, has averaged $49 million in revenue annually from ticket sales, stateroom sales, and other user fees (Figure 29). The AMHS has historically operated with a farebox recovery rate (the percentage of expenses covered by user fees) of about one-third, so the state has historically provided additional funds to cover its operating losses.

Figure 29. Alaska Marine Highway System (AMHS) Revenues, Fiscal Years 2011–2020

Alaska’s fiscal structure does not greatly benefit from population and economic growth, with the majority of revenue derived from the oil and gas industry either directly or indirectly (through the Permanent Fund). Alaska’s North Slope faces a decline in oil production and revenues. Geology drives a natural decline as fields age. However, in the national political environment, there is also pressure to move away from fossil fuel production, which could lead to delays or even cancellations of development projects.

Minimal non-oil and gas revenues and a lack of broad-based taxes result in a system that does not generate significant revenues from population growth or economic development to fund construction and maintenance of transportation infrastructure that is used to support that growth. This disconnect between fund sources and uses is a challenge.

Alaska’s constitution largely prohibits dedication of funds, which makes it challenging to ensure that funds generated with the intent of supporting transportation infrastructure are in fact appropriated to that use. With increasing demands for government spending and absent
broad-based taxes or other measures to grow state revenues, there will be increasing competition for funding across multiple state priorities. Future funding opportunities could include the following:

- Various industries have demonstrated a willingness to work with the state to fund transportation infrastructure they use. Examples of these public-private partnerships include initial design and permitting of a restricted-access road to the Ambler Mining District in northwest Alaska; and the cruise ship industry’s payment of a passenger tax that affected communities used for infrastructure that supports cruise visitors.

- Public-private partnerships may become an increasingly important tool for funding major transportation infrastructure projects, especially in remote and less-populated areas in which developable resources exist. Public-private partnerships may also allow for the outsourcing of operations and maintenance of facilities, such as the state’s rural airports.

- User fees, including tolls, are common in other parts of the United States and may be feasible in some situations. For example, the proposed Knik Arm Crossing would have used tolls to support revenue bonds used for its construction.

- The AMHS has been studied extensively over the last decade, including an economic analysis of reshaping options, a state-supported working group formed to evaluate options, and a regional working group formed to provide recommendations.

- Though not specific to transportation, implementing broad-based taxes would help solve the disconnect between fund sources and uses and would relieve pressure on the major sources of funding (as noted before, the Permanent Fund draws on oil and gas-related taxes) that support the majority of the state’s expenditures.
TRANSPORTATION ASSESSMENT

Vision

Transportation infrastructure is the basic lifeline for commerce and everyday life across Alaska. Making the right investments at the right time is critical to sustaining the transportation system’s strong performance. The desire to develop and modernize Alaska’s transportation systems is balanced by the importance of maintaining the current network, making it resilient to disasters of all types, and maintaining accessibility to remote and rural communities.

Integrating and connecting modes begins with an understanding of each mode and its role in moving people and goods statewide. Identifying trends helps inform policy development actions taken to guide investments in and management of the transportation system.
The commute mode shares shown in Figure 30 are based on the percentage of workers age 16 years and up who commute by bicycle; by private vehicle, including car, truck, van, taxicab, and motorcycle; by public transportation, including bus, rail, and ferry; and by foot.

**Figure 30. Commute Mode Choices**
Road System Overview

NHS roads fall into different classifications that determine their federal funding eligibility and reporting requirements. These classifications include the NHS; the Alaska Highway System; the Strategic Highway Network (STRAHNET) designated by the Department of Defense for military mobilization; or in the Community Transportation Program (Figure 31). Federal funds are targeted on the NHS, which includes the Interstate Highway System as well as other roads important to the nation’s economy, defense, and mobility. Bridges are classified as either on or off the NHS. Other important roads and bridges that link communities are on the Alaska Highway System, while most of the community and local roads fall under the Community Transportation Program. These roads and bridges form the core network for the state. They accommodate freight movement and are used by people to get to and from work within their communities.
Table 3. Interstate Designations and Roadway Names

<table>
<thead>
<tr>
<th>Interstate Designation</th>
<th>Southern/Eastern Terminus</th>
<th>Northern/Eastern Terminus</th>
<th>Roadway Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Anchorage (A-3)</td>
<td>Canadian Border</td>
<td>• Glenn Highway</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Portions of Richardson Highway</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tok Cut-Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Portions of Alaska Highway</td>
</tr>
<tr>
<td>A2</td>
<td>Tok (A-1)</td>
<td>Fairbanks (A-4)</td>
<td>• Portions of Alaska Highway</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Portions of Richardson Highway</td>
</tr>
<tr>
<td>A3</td>
<td>Soldotna</td>
<td>Anchorage (A-1)</td>
<td>• Seward Highway</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Sterling Highway</td>
</tr>
<tr>
<td>A4</td>
<td>Palmer (A-1)</td>
<td>Fairbanks (A-2)</td>
<td>• Parks Highway</td>
</tr>
</tbody>
</table>

Source: Alaska DOT&PF and Interstate Guide

The subsystems of the NHS are described below:

- **Interstates**—The Eisenhower Interstate System consists of over 1,000 miles of roadway and is composed of four interstate routes—A-1, A-2, A-3, and A-4. Standards for Alaska’s interstates are defined in U.S.C. Title 23 and are different from those in the lower 48 states.

- **Other Principal Arterials**—These highways provide access between an interstate or other arterial and a major port, airport, public transportation facility or other intermodal transportation facility. Sections of the Dalton and Elliot Highways are part of this NHS subsystem.

- **STRAHNET**—STRAHNET highways are important to the United States’ strategic defense policy and provide defense access, continuity, and emergency capabilities for defense purposes. Alaska has nearly 1,400 miles of roadway on the STRAHNET, including elements of the Richardson Highway, Sterling Highway, Glenn Highway, and the Tok Cutoff Highway, among many others.

- **Major Strategic Highway Network Connectors**—These are highways which provide access between major military installations and highways that are part of STRAHNET. There are no elements of this subsystem in Alaska.

- **Intermodal Connectors**—Intermodal connectors are roadways providing access between major intermodal facilities and the other four subsystems comprising the NHS. There are 29 of these facilities, totaling 112 miles. All the connectors are listed in Table 4.
## Table 4. NHS Intermodal Connectors in Alaska

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Geographic Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Airport Facilities</strong></td>
<td></td>
</tr>
<tr>
<td>Anchorage International Airport</td>
<td>From Minnesota Drive via International Airport Road, Airport Arrival Ramp, Airport Departure Ramp</td>
</tr>
<tr>
<td>Fairbanks International Airport</td>
<td>From Parks Highway via Airport Way, Wien Rd, Wein Northbound-Airport Way Eastbound Ramp</td>
</tr>
<tr>
<td>Juneau International Airport</td>
<td>From Glacier/Douglas Highway NHS via Yandukin Road, Shell Simmons Drive</td>
</tr>
<tr>
<td>Kenai Airport</td>
<td>Served indirectly (proximate connection) from Kenai Spur Road</td>
</tr>
<tr>
<td>Ketchikan International Airport</td>
<td>From Ketchikan Ferry Terminal Road via North Tongass, Ketchikan Airport Shuttle Access Road to waterway, From waterway via Gravina Island Airport Road</td>
</tr>
<tr>
<td>Kodiak Airport</td>
<td>From Marine Way via Rezanof Drive, Kodiak Airport Terminal Road</td>
</tr>
<tr>
<td>Petersburg James A. Johnson Airport</td>
<td>From Petersburg Ferry Terminal Road, commencing at Milikof Highway, along Nordic Drive and Haugen Drive to airport entrance</td>
</tr>
<tr>
<td>Sitka Airport</td>
<td>From Halibut Point Road via Lake Street, Harbor Drive</td>
</tr>
<tr>
<td>Wrangell Airport</td>
<td>From Wrangell Ferry Terminal along Church/2nd Street, Wrangell Avenue, Bennett Street, and Airport Road to Airport Entrance</td>
</tr>
<tr>
<td><strong>Port Terminals</strong></td>
<td></td>
</tr>
<tr>
<td>Ketchikan Port</td>
<td>From Ketchikan Ferry Terminal Road via South Tongass Highway to Bawden Street</td>
</tr>
<tr>
<td>Port Nikiski - Kenai</td>
<td>From Sterling Highway via Kenai Spur Road, Nikiski Beach Road</td>
</tr>
<tr>
<td>Port of Alaska</td>
<td>From 6th Avenue via A Street/C Street couplet, C Street, Ocean Dock Road, and C Street/Ocean Dock Ramps</td>
</tr>
<tr>
<td>Port of Juneau</td>
<td>From Thane Road NHS/Egan Drive (MP 0) via Thane Road to Mount Roberts Drive</td>
</tr>
<tr>
<td>Port of Nenana</td>
<td>From Parks Highway via 6th Street, Nenana Street, Front Street, Dock Road</td>
</tr>
<tr>
<td>Port of Seward</td>
<td>From Seward Highway NHS/STRAHNET</td>
</tr>
<tr>
<td>Facility Name</td>
<td>Geographic Limits</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Port of Skagway</td>
<td>Served by the Klondike Highway NHS Route</td>
</tr>
<tr>
<td>Port of Valdez</td>
<td>From Richardson Highway NHS via Dayville Road</td>
</tr>
<tr>
<td><strong>Ferry Terminals</strong></td>
<td></td>
</tr>
<tr>
<td>Haines Ferry Terminal</td>
<td>From Haines Highway NHS via Haines/Lutak Road, Ferry Terminal Road</td>
</tr>
<tr>
<td>Homer Ferry Terminal</td>
<td>From Sterling Highway NHS via Homer Ferry Terminal Road</td>
</tr>
<tr>
<td>Juneau Auke Bay Ferry Terminal</td>
<td>From Glacier Highway/Egan Drive NHS/Yandukin Drive via Auke Bay Ferry Terminal Road (via West Berth Road, East Berth Road, and East Stern Berth Road)</td>
</tr>
<tr>
<td>Ketchikan Ferry Terminal</td>
<td>From Tongass Highway via Ketchikan Ferry Terminal Road</td>
</tr>
<tr>
<td>Kodiak Ferry Terminal</td>
<td>From Rezanof Drive via Marine Way, Marine Highway Access</td>
</tr>
<tr>
<td>Petersburg Ferry Terminal</td>
<td>From Mitkof Highway via Petersburg Ferry Terminal Road</td>
</tr>
<tr>
<td>Sitka Ferry Terminal</td>
<td>From Lake Street via Halibut Point Road, Sitka Ferry Access Road</td>
</tr>
<tr>
<td>Skagway Ferry Terminal</td>
<td>Served by the Klondike Highway NHS Route</td>
</tr>
<tr>
<td>South Mitkof Ferry Terminal</td>
<td>From Petersburg Ferry Terminal Road via Mitkof Highway, South Mitkof Ferry Terminal Road</td>
</tr>
<tr>
<td>Valdez Ferry Terminal</td>
<td>From Richardson Way NHS/Meals Avenue via Egan Drive, Hazelet Avenue, and Ferry Way</td>
</tr>
<tr>
<td>Whittier Ferry Terminal</td>
<td>From Seward Highway NHS via Portage/Glacier Road, Whittier Access Road, Camp Road, Whittier Ferry Terminal Road</td>
</tr>
<tr>
<td>Wrangell Ferry Terminal</td>
<td>From Stikine/Evergreen Avenue via Wrangell Ferry Terminal Spur Road</td>
</tr>
</tbody>
</table>

Source: FHWA Office of Planning, Environment, and Realty—NHSxvii
Figure 31. National Highway System
Figure 32 National Highway System (Detail)
DOT&PF owns more of the roadway centerline miles than any other agency, with 5,635 of the total 17,735 miles in the state (32 percent). Most state-owned roads are rural, with only 12 percent classified as urban. Figure 33 shows roadway centerline miles for state-owned roads by functional class. Between the 2013 data used in Let’s Keep Moving 2036 and 2019, state-owned mileage increased 44 miles (0.8 percent).

**Figure 33. 2019 State-Owned Roadway Centerline Miles by Functional Class**

Data Source/Date Accessed: FHWA, February 202
Figure 34. Roadway Functional Class
Figure 35. Roadway Functional Class (Detail)
Vehicle Miles Traveled (VMT)

Despite arterials comprising less than 10 percent of statewide roadway mileage, they represent the largest portion of total VMT at 32 percent. The second most-traveled functional class in Alaska is Interstate routes (28 percent) which comprise 7 percent of the total roadways. Major roads in urban population centers carry the highest traffic volume. Figure 36 presents 2019 VMT by roadway functional class on all DOT&PF roadways. Between 2006 and 2019, statewide lane miles increased by 20 percent while total VMT increased by 18 percent and VMT per capita increased by 8 percent. Overall, the amount of driving per lane-mile length has decreased.

Figure 36. Annual VMT by Functional Class

![VMT by Functional Class](image)

Annual Average Daily Traffic (AADT)

Related to VMT, annual average daily traffic (AADT) on key roadways is shown in Figure 37. Urban-area roadways carry the highest traffic volumes. AADT, along with vehicle classification and weight, is a key measure for pavement wear and serves as a basis for traffic capacity assessment. Notably, in reporting annual averages, these data do not reflect traffic volume seasonality which substantially impacts driver experience between peak and off-peak times.
Figure 37. 2019 Annual Average Daily Traffic
Travel Time Reliability and Emissions Performance Measures

Travel time reliability is a measure of how consistent or dependable travel times are. Travel time reliability can be measured either from day to day or across different times of day, or both. If trip times are inconsistent, travel time is considered unreliable, because it is difficult to estimate consistently and accurately.

States must establish and report reasonable targets based on Federal Highway Administration (FHWA)-supplied travel time data from the National Performance Management Data Set (NPMRDS); analysis of representative segments; and contributing factors and projections of future efforts for the level of travel time reliability (LOTTR) for interstates and non-interstate NHS, as required by US 23 CFR 490.507. States must document actions they will take to achieve the target if the actual performance level is not equal to or better than the established target (Significant Progress Determination US 23 CFR 490.109).

DOT&PF established conservative targets because there are large gaps in travel time data for rural areas. These gaps are due to low volumes and other contributing factors such as limited access control, lack of roadway connectivity, and alternative routes. Based on the mid-performance progress report, DOT&PF is meeting its established targets for travel time reliability.

DOT&PF is also required to set a target and report on the Total Emissions Reduction measure (23 CFR part 490) to assess on-road mobile source emissions. Tracked emissions include PM$_{2.5}$, PM$_{10}$, NO$_x$, VOC, and CO. Emissions reductions targets were met in 2020 for NO$_x$ and CO. No data or targets are yet available for VOC.

**Table 5. Federal Performance Measures for Travel Time Reliability, Congestion, and Emissions**

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Baseline</th>
<th>2-Year Condition</th>
<th>2-Year Target</th>
<th>4-Year Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Reliable Person-Miles Traveled on the Interstate</td>
<td>95.5%</td>
<td>94.7%</td>
<td>92.0%</td>
<td>92.0%</td>
</tr>
<tr>
<td>Percent of Reliable Person-Miles Traveled on non-interstate NHS</td>
<td>-</td>
<td>80.8%</td>
<td>-</td>
<td>70.0%</td>
</tr>
</tbody>
</table>

**Total Emissions Reduction for CMAQ Criteria Pollutants**

<table>
<thead>
<tr>
<th>Emissions Reductions</th>
<th>Baseline</th>
<th>2-Year Condition</th>
<th>2-Year Target</th>
<th>4-Year Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Emission Reductions: PM$_{2.5}$</td>
<td>400.6</td>
<td>0.042</td>
<td>0.050</td>
<td>0.050</td>
</tr>
<tr>
<td>Total Emission Reductions: NO$_x$</td>
<td>4,663.0</td>
<td>0.304</td>
<td>0.050</td>
<td>0.050</td>
</tr>
<tr>
<td>Total Emission Reductions: VOC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Emission Reductions: PM$_{10}$</td>
<td>1,943.0</td>
<td>0.087</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>Total Emission Reductions: CO</td>
<td>5,023.0</td>
<td>310.9</td>
<td>20.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Source: Alaska’s 2020 Mid Performance Period Progress Report\(^{xlviii}\)
Truck Traffic

Truck volume and percentage data was sourced from 808 statewide count locations on higher-order roadways between 2010 and 2019. Figure 38 demonstrates that for each road classification, urban roadways carry more single-unit and combination trucks than rural roads—up to an average of over 900 daily trucks on urban interstate and principal arterial roadways. However, trucks make up a higher proportion of traffic on rural roads, with an average of up to 18 percent on rural Interstate and principal arterial roadways. Figure 39 shows these patterns across statewide highways.

Figure 38. Average Truck Volume and Percentage by Roadway Classification (2010-2019)
When combined by DOT&PF region, average Central Region roadways in the dataset carry the highest truck volume but represent the lowest truck percentage of the traffic stream at 8 percent.

**Figure 39. Average Truck Volume and Percentage by DOT&PF Region (2010-2019)**

![Bar chart showing truck volume and percentage by DOT&PF region for 2010-2019. Northern region has 227 average truck daily volume and 13% truck percentage. Central region has 316 average truck daily volume and 8% truck percentage. Southcoast region has 188 average truck daily volume and 9% truck percentage.]

Figure 40 displays statewide truck volumes on the 308 roadway segments counted in 2019. As demonstrated in Figure 40, urban areas have higher truck volumes, but rural highways carry more trucks as a percentage of vehicles with many over 20 percent trucks. Dalton Highway traffic is composed of over 60 percent trucks, though totals fewer than 100 trucks per day, as shown in Table 6, Average Daily Truck Volumes, Selected Roadway Segments, 2019. Figure 41 summarizes average reported truck volumes by region on selected roadways with truck volumes increasing since 2012 in Central and Northern Regions and declining in the Southcoast Region. The data shown in Figure 40 and Figure 41 are the most recent and widespread available but do not necessarily capture a complete and representative picture of truck volume patterns and trends.
Figure 40. Truck Volumes, Selected Locations

2019 Truck Volumes
- 1 - 200
- 201 - 400
- 401 - 600
- 801 - 1,100
- >1,100

May 2021
Data Source: Alaska DOT&PF
Figure 41. Average Truck Volumes by DOT&PF Region, Selected Roadways, 2012-2019

Source: Alaska DOT&PF – Transportation Data Programs
## Table 6. Average Daily Truck Volumes, Selected Roadway Segments, 2019

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Segment Descriptor</th>
<th>Daily Truck Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egan Drive / Glacier Highway</td>
<td>Near the Juneau Airport</td>
<td>995</td>
</tr>
<tr>
<td>Douglas Highway</td>
<td>Near Juneau Douglas Bridge</td>
<td>550</td>
</tr>
<tr>
<td>South Tongass Highway</td>
<td>In Ketchikan</td>
<td>650</td>
</tr>
<tr>
<td>Klondike Highway</td>
<td>In Skagway</td>
<td>130</td>
</tr>
<tr>
<td>Dalton Highway</td>
<td>Milepost 189</td>
<td>115</td>
</tr>
<tr>
<td>Parks Highway</td>
<td>Near the Denali Highway</td>
<td>360</td>
</tr>
<tr>
<td>Parks Highway</td>
<td>In Fairbanks</td>
<td>940</td>
</tr>
<tr>
<td>Steese Highway</td>
<td>Near Fox</td>
<td>195</td>
</tr>
<tr>
<td>Richardson Highway</td>
<td>Near Tok Cut-off</td>
<td>220</td>
</tr>
<tr>
<td>Glenn Highway</td>
<td>Near Eureka</td>
<td>225</td>
</tr>
<tr>
<td>Elliot Highway</td>
<td>Near Tatalina</td>
<td>125</td>
</tr>
<tr>
<td>Parks Highway</td>
<td>In Willow</td>
<td>700</td>
</tr>
<tr>
<td>Parks Highway</td>
<td>In Wasilla</td>
<td>2060</td>
</tr>
<tr>
<td>Seward Highway</td>
<td>South of Potter’s Marsh</td>
<td>720</td>
</tr>
<tr>
<td>Seward Highway</td>
<td>Near Dimond Blvd</td>
<td>1830</td>
</tr>
<tr>
<td>Sterling Highway</td>
<td>In Sterling</td>
<td>690</td>
</tr>
<tr>
<td>Sterling Highway</td>
<td>In Homer</td>
<td>545</td>
</tr>
<tr>
<td>C Street</td>
<td>Through Midtown Anchorage</td>
<td>640</td>
</tr>
<tr>
<td>Glenn Highway</td>
<td>Near Eklutna</td>
<td>1905</td>
</tr>
</tbody>
</table>
Figure 42. Percent Truck Trips
TRUCK TRAVEL TIME RELIABILITY PERFORMANCE MEASURES

Shippers and freight carriers require predictable travel times to remain competitive. The Truck Travel Time performance measure related to freight movement on the interstate uses truck speed and travel time reliability data to calculate the Truck Travel Time Reliability Index. Truck travel time reliability is calculated and averaged for the entire interstate highway system in the state. Again, like the travel time reliability performance measure, data challenges impact the ability to accurately calculate this index, and conservative targets were set from the 2020 Mid Performance Period Progress Report. Table 7 documents that the 2-year target was met.

Table 7. 2020 Truck Travel Time Performance Measure Summary

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Baseline</th>
<th>2-Year Condition/Performance</th>
<th>2-Year Target</th>
<th>4-Year Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Travel Time Reliability (TTTR) Index</td>
<td>1.84</td>
<td>1.79</td>
<td>2.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Source: Alaska’s 2020 Mid Performance Period Progress Report

This measure is also used to identify and quantify freight truck bottlenecks on interstate highways. Freight bottleneck locations routinely experience recurring congestion and backups because traffic volumes exceed highway capacity. The 2018 Alaska Truck Bottlenecks Report identified 18 segments associated with 11 bottleneck locations, primarily in Anchorage and Fairbanks, based on truck delay and travel time reliability estimates from NPMRDS. A 2020 addendum to this analysis using 2019 NPMRDS data concluded that improvement projects raised performance at two locations. Conditions declined at one location.

Pavement and Bridge Conditions

PAVEMENT

DOT&PF owns and maintains a combination of paved (61 percent) and unpaved (39 percent) roadways. The Northern Region has the most unpaved centerline miles, including the 414-mile-long Dalton Highway, part of the NHS, which has mostly gravel surfaces with intermittent pavement (Table 8).
Table 8. DOT&PF Highway & Roadway Pavement Status (2019)

<table>
<thead>
<tr>
<th>Region</th>
<th>Paved Centerline Miles</th>
<th>Unpaved Centerline Miles</th>
<th>Total Centerline Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Region</td>
<td>1,884.955</td>
<td>1,480.883</td>
<td>3,365.838</td>
</tr>
<tr>
<td>Central Region</td>
<td>1,302.349</td>
<td>251.840</td>
<td>1,554.189</td>
</tr>
<tr>
<td>Southcoast Region</td>
<td>560.541</td>
<td>155.193</td>
<td>715.734</td>
</tr>
<tr>
<td>Statewide</td>
<td>3,747.845</td>
<td>1,887.916</td>
<td>5,635.761</td>
</tr>
</tbody>
</table>

Source: State of Alaska Certified Public Road Mileage

Figure 44. 2020 Pavement Conditions for the NHS

Figure 43. Overall Pavement Conditions
Figure 44 and Figure 45 summarize the available 2020 pavement conditions data for DOT&PF-owned paved roadways. Pavement condition is mapped in Figure 45, which shows poor-condition pavement is generally found on relatively short segments of facilities with fair condition ratings. Pavement status—paved vs. unpaved roadways and highways—is delineated by DOT&PF region in Table 9.

Of particular concern for roadway pavement condition is the use of studded tires, which results in a pavement defect known as rutting. Higher volume roads have higher average wear rates due to studded tire use than lower volume roadways. Based on planning-level economic analysis completed in 2019, pavement resurfacing costs resulting from studded tire use ($13.7 million/year) is more than 42 times the states fees from studded tire and stud-installation sales ($318,000).

Table 9 documents improvements in NHS pavement conditions between 2015 and 2020. The proportion of the NHS in good condition has increased and the portion in poor condition has decreased for both interstate and NHS non-interstate routes. No part of the interstate system was reported with poor condition in 2020.

Table 9. NHS Pavement Condition Comparison: 2015-2020

<table>
<thead>
<tr>
<th>Pavement Condition</th>
<th>NHS Interstate</th>
<th>NHS Non-Interstate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015</td>
<td>2020</td>
</tr>
<tr>
<td>Good Condition</td>
<td>23.6%</td>
<td>32.1%</td>
</tr>
<tr>
<td>Fair Condition</td>
<td>71.3%</td>
<td>67.9%</td>
</tr>
<tr>
<td>Poor Condition</td>
<td>5.1%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Figure 45. 2020 Pavement Conditions for NHS Routes
BRIDGES

DOT&PF provided bridge condition data for 1,306 bridges, including large culverts, and 565 bridges on NHS routes. Based on 2020 bridge data, summarized in Figure 47, a majority of deck area on both NHS and non-NHS bridges is in fair condition. Out of approximately 4.5 million square feet of NHS deck area, 35 percent is in good condition. Figure 47 displays statewide bridge conditions, including bridges owned by other public agencies, but inspected by DOT&PF.
Figure 47. Bridge Condition
MANAGING PAVEMENT CONDITION

DOT&PF is improving its pavement management practices by transitioning to the more cost-effective life cycle planning method from the “worst-first” method. A life cycle planning method emphasizes rehabilitating assets that are still in good or fair condition before they can deteriorate into “the worst,” requiring more costly replacement.

To manage pavement and bridge infrastructure, DOT&PF is using AgileAssets, an updated AASHTOWARE bridge management software, and the Transportation Asset Management Information System (TAMIS). Project cost data is being used to assist in life cycle planning and in the selection of maintenance, preservation, and rehabilitation projects. This allows the DOT&PF to analyze long-term strategies and funding needs. DOT&PF complies with the 24-month inspection frequency mandated by 23 CFR 650 Subpart C—National Bridge Inspection Standards.

DOT&PF is working towards the following objectives for pavement and bridge management:

- Treating pavement in good and fair condition before it deteriorates, to save money over the pavement’s life cycle
- Providing data and information to more effectively select designs for future surface treatment, rehabilitation, and reconstruction
- Designing and constructing bridges to last with minimal maintenance
- Sealing decks and expansion joints to protect bridges from road-salt-laden runoff
- Performing maintenance, such as cleaning gutters and deck drains, removing debris from bottom chords and bearing seats, and removing drift from piers
- Investing in preservative treatments for bridges in good and fair condition to slow deterioration—preservative treatments might include deck seals and repainting structural steel elements
- Providing information to allow effective selection and design of future maintenance and preservation (i.e., deck treatments), rehabilitation, and reconstruction projects
- Accurately estimating future conditions versus funding scenarios to evaluate pavement bridge funding strategies
- Displaying analysis results in a format understandable to non-technical audiences

The TAMP sets objectives for pavement management strategies that make best use of limited funds by prioritizing optimal target areas. Proper data analysis of current conditions is important to identify these target areas. The 2019 TAMP projected $88 million would be needed annually from 2019-2028 for pavement management and $47 million for bridge management to maintain a state of good repair at the lowest cost. This budget includes preservation, rehabilitation, and reconstruction costs.

As new projects are constructed and more infrastructure is added to the current transportation system, a lack of maintenance and operation resources could put the assets at risk. Challenges for future pavement and bridge maintenance listed in the TAMP include the following:
• Lack of quality data for needs forecasting
• Seismic events
• Inadequate funding
• Flooding
• Coastal erosion
• Permafrost thawing
• Aufeis (river ice overflow) impacts
• Maintaining lifelines to rural communities
• Construction quality control

### Highway Infrastructure Condition Performance Measures

Table 10 summarizes the performance measures for highway infrastructure conditions. All performance measures are exceeding targets with the exception of the percentage of NHS bridges classified as in good condition, with a two-year condition of 33.5 percent, which falls short of the 40 percent target. The infrastructure condition performance measure is relatively new and some benchmarks and targets are not fully developed.

#### Table 10. Infrastructure Condition Performance Measures Summary

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Baseline</th>
<th>2-Year Condition/Performance*</th>
<th>2-Year Target</th>
<th>4-Year Target (2021)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Miles in Good Condition – Interstate Pavement</td>
<td>32.4%</td>
<td></td>
<td>20.0%</td>
<td></td>
</tr>
<tr>
<td>Lane Miles in Poor Condition - Interstate Pavement</td>
<td>0.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Miles in Good Condition - Non-Interstate NHS</td>
<td>35.6 (2017)</td>
<td>44.1%</td>
<td>10.0%</td>
<td></td>
</tr>
<tr>
<td>Lane Miles in Good Condition - Non-Interstate NHS (Full Distress +IRI)</td>
<td>23%</td>
<td>15.0%</td>
<td>15.0%</td>
<td></td>
</tr>
<tr>
<td>Lane Miles in Poor Condition - Non-Interstate NHS</td>
<td>29.9 (2017)</td>
<td>21%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Miles in Poor Condition - Non-Interstate NHS (Full Distress +IRI)</td>
<td>7.0%</td>
<td>15.0%</td>
<td>15.0%</td>
<td></td>
</tr>
<tr>
<td>Deck Area in Good Condition - NHS Bridges</td>
<td>39.4% (2017)</td>
<td>33.5%</td>
<td>40.0%</td>
<td>40.0%</td>
</tr>
<tr>
<td>Deck Area in Poor Condition - NHS Bridges</td>
<td>6.4% (2017)</td>
<td>5.8%</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Source: Alaska’s 2020 Mid Performance Period Progress Report

70 | Alaska DOT&PF | Kittelson & Associates
Highway Safety

The most recent federal transportation legislation, the Fixing America’s Surface Transportation (FAST) Act (2015), continued a trend of increasing emphasis on transportation safety. Notably, it continued the Highway Safety Improvement Program (HSIP) as a core federal-aid program. The HSIP requires that all states have a current Strategic Highway Safety Plan (SHSP) that guides investments of HSIP funds through a data-driven project selection process, as well as a Rail-Highway Crossing Program. The Alaska SHSP was updated in 2017 and covers the years 2018-2022.

DOT&PF’s approach to safety is primarily guided by the Alaska Strategic Highway Safety Plan. The SHSP defines three broad emphasis areas for improving highway safety in Alaska:

- **Driver Behavior**: Involves the actions and behavior of drivers and passengers with respect to impaired driving and occupant protection (e.g., seat belt and car seat use). This emphasis area also focuses on two age groups who are at higher risk of being involved in a fatal or serious injury crash: young drivers (20 and under) and older drivers (65 and up)
- **Roadways**: Includes lane departure, intersection, and animal-vehicle collision types
- **Special Users**: Focuses on crashes involving pedestrians, bicyclists, motorcyclists, and off-road vehicles

THE COST OF CRASHES IN ALASKA

**TOTAL COST**
$1,244,491,200

**DAILY COST**
$3,409,565

Alaska’s VISION is toward ZERO deaths and serious injuries so all public roadway users arrive safely at their destination.

The SHSP MISSION is to improve the safety of all roadway users through a collaborative approach that focuses resources on the most effective solutions using evidence-based engineering, enforcement, education, and emergency response initiatives.

Source: SHSP
FATAL AND SERIOUS INJURY CRASHES

Figure 48 shows that while there is fluctuation from year to year, fatalities have generally been on the rise while serious-injury crashes are trending downward. The trendline for the fatality rates per 100 million VMT in Figure 49 reflects this trend. Figure 50 represents the statewide serious injury rate per 100 million VMT.

Figure 48. Statewide Crashes by Severity, 2008-2017

Source: SHSP, HSP, 2019
Figure 49. Statewide Fatality Rate per 100 Million Vehicle Miles Travelled (MVMT)


Figure 50. Statewide Serious Injury Rate per 100 MVMT

Non-motorized fatalities and serious injuries, shown in Figure 51, have also been trending upward, consistent with national trends.

**Figure 51. Statewide Non-Motorized Fatalities and Serious Injuries**

(Data Source: HSIPR, 2020)
SAFETY PERFORMANCE MEASURES

FHWA also requires that states establish and monitor performance targets for five-year averages for five safety performance measures:

1. Number of fatalities.
2. Rate of fatalities per 100 million VMT.
3. Number of serious injuries.
4. Rate of serious injuries per 100 million VMT.
5. Number of non-motorized fatalities and non-motorized serious injuries (non-motorized refers to active transportation modes, such as walking, biking, riding a scooter, or skating, etc.).

Table 11 presents Alaska’s safety performance measures and targets and reports on progress to date. The data show that Alaska did not meet the 2018 target for the number of fatal crashes, but it met the target for the fatality rate. DOT&PF has revised its targets upward to account for the increase in crashes.

**Table 11. Progress on Performance Targets (Five-year Rolling Average)**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Fatalities</td>
<td>5-year Average</td>
<td>66.4</td>
<td>70.4</td>
<td>76.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target (5-year average)</td>
<td>75</td>
<td>75</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatality Rate (per 100 million VMT)</td>
<td>5-year Average</td>
<td>1.334</td>
<td>1.374</td>
<td>1.456</td>
<td>1.384</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target (5-year average)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Serious Injuries</td>
<td>5-year Average</td>
<td>348.8</td>
<td>346.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target (5-year average)</td>
<td></td>
<td>375</td>
<td>350</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Rate of Serious Injuries (per 100 million VMT)</td>
<td>5-year Average</td>
<td>7.028</td>
<td>6.913</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target (5-year average)</td>
<td></td>
<td>7.5</td>
<td>7</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Number of Non-Motorized Fatalities and Serious Injuries</td>
<td>5-year Average</td>
<td>52.6</td>
<td>60.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target (5-year average)</td>
<td></td>
<td>55</td>
<td>55</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Source: FHWA. Data Accessed: February 2018. HSIP 2020 Annual Report. Note: 2018 5-year average performance data is only available for fatal crashes and for fatality rate. Remaining measures will be reported when additional data is available.
Roadway System Key Trends, Challenges, and Opportunities

TRENDS:

- Between 2006 and 2019, statewide lane miles increased by 20 percent while total VMT increased by 18 percent and VMT per capita increased by 8 percent.
- Urban-area roadways carry the highest AADT. Reporting statewide annual averages, however, does not reflect traffic volume seasonality, which substantially impacts driver experience between peak and off-peak times. Urban areas have higher truck volumes, but rural highways carry more trucks as a percentage of vehicles, with many carrying over 20 percent trucks.
- DOT&PF is improving their pavement management practices by transitioning to the more cost-effective life-cycle planning method from the “worst-first” method.
- DOT&PF has prioritized safety with its federal funds. HSIP funds are promptly and consistently obligated, averaging a 94 percent obligation rate since 2014 and with only one year below 90 percent. From 2016 to 2020, Alaska transferred approximately $46 million dollars from other federal programs into the HSIP, boosting its HSIP funds by about 30 percent.

CHALLENGES:

- Limited funding, retiring personnel, studded tire use, and climate change impacts are some of the major challenges DOT&PF faces while maintaining the existing roadway and bridge network.
- Lack of roadway network redundancy means that major events (e.g., landslides, avalanches, and earthquakes) or infrastructure damage (e.g., bridge strikes) could disable a connecting roadway and cut communities and freight off for long periods of time.
- Travel time reliability is impacted by external factors, such as avalanche mitigation activities along the Seward, Dalton, Richardson (Thompson Pass), and Klondike highways, and Thane Road; extreme weather events; lack of reductant facilities/alternative routes; construction work zone management; maintenance; and the physical capacity of roadways.
- Bridge height and overhead clearance limitations, bridge load restrictions, and roadway seasonal weight restrictions impact the movements of people and goods.
- Pedestrian fatalities have been increasing since 2013. Fatalities involving a driver under the influence of alcohol have been increasing. Relying solely on federal HSIP funds for safety work constrains what can be accomplished. The lack of additional state funds, or flexibility in federal funds prevents the implementation of certain strategies.
- DOT&PF GIS data do not always correspond with established DOT&PF boundaries, nor do they always align with federally-reported data. This poses challenges for efficiently and accurately mapping and reporting transportation roadway data.
OPPORTUNITIES:

- The majority of DOT&PF centerline miles (54 percent) are local or collector roads. There may be opportunities to discuss jurisdictional transfers to local agencies.
- Coordination and alignment between DOT&PF and rural and tribal leaders could be improved with the development and implementation of Tribal Safety Plans.
- The data-driven safety approach could be expanded by emphasizing treatment cost-effectiveness assessments and Highway Safety Manual screening and evaluation methods at the project level.
- Treating and rehabilitating pavements and bridges in good and fair conditions before they deteriorate will save money over a project’s life cycle.
- Continuing to allocate resources for improved data collection, management, and analysis will foster timely and accurate prioritization of investments, management of assets, and required reporting.
Active Transportation

Since the first Alaska Bicycle and Pedestrian Plan was completed in 1994, the state has made progress in providing facilities to accommodate pedestrians and bicyclists both within the right of way and adjacent to roadway facilities, primarily in urban areas.

Strong active transportation networks confer a host of benefits on the communities they support. The physical activity encouraged by improvements in active transportation, including walking and bicycling, has been linked to improvements in overall health and quality of life. Continued investment in safe infrastructure contributes to a reduction in motor vehicle-related bicycle and pedestrian injuries and fatalities, making roadways safer for all users. Active transportation facilities and networks also attract tourists, connect people to everyday destinations, and can create economic development opportunities in both urban and rural areas. For many people, especially in rural Alaska, active modes are the primary means of getting around.
The Alaska Statewide Active Transportation Plan (ASATP)

The Alaska Statewide Active Transportation Plan (ASATP) outlines Alaska's bicycle and pedestrian transportation system in terms of existing conditions, needs, shortcomings, and goals. DOT&PF has identified goal areas, objectives, and performance measures to deliver the ASATP’s vision, guide transportation decisions, and ensure the effectiveness of transportation investments over the 20-year life of the ASATP. The goal areas listed below identify and describe key matters for focus and improvement over the life of the ASATP.

- Safety
- Health
- Maintenance/System Preservation
- Connectivity
- Economic Development

AMATS and FAST Planning are currently developing updated active transportation plans and the City and Borough of Juneau developed an active transportation plan in 2009 with similar goals of increasing active transportation facilities and safety.

Safe Routes to Schools

Alaska had a Safe Routes to School program, aimed at increasing the number of students who choose to walk or bike to school by making it an accessible and safe option. The program provided resources for improving walking and biking facilities, in addition to driver education for school zones. Although dedicated funding to the Safe Routes to School Program was terminated in 2012, some funds are still available for Safe Routes to School improvement projects through the Alaska Transportation Alternatives Program.

Rural Communities

For rural communities, off the road system, active travel has generally not been a focus of regional plans. But the lack of roadway infrastructure and the number of visitors to hub communities for services or seasonal employment who do not have access to vehicles make active options a critical need. As noted in the Southwest Alaska Transportation Plan Update, non-resident pedestrians, such as tourists and seasonal workers, can significantly increase pedestrian activity in small communities and may not understand how the local system functions.

Funding

Alaska receives higher federal funding per capita than other states. As a result, it ranks #1 in the country for highest spending per capita ($11.58) on walk/bike projects; however, this does not account for the vast size of the state. Figure 52 shows the amount of federal-aid
highway program spending on pedestrian and bicycle facilities in Alaska. These dedicated funds represent only part of the funding picture. Metropolitan planning organizations (MPOs) and local agencies commit additional funding to active transportation, and active transportation infrastructure is also constructed as a part road projects. However, these federal funds are a key source of non-automobile funding and have been declining.

Figure 52. Federal-Aid Highway Program Spending on Pedestrian and Bicycle Facilities in Alaska, 1999-2020

There are significant economic benefits to increasing walking and biking mode shares. A new report from the Rails-to-Trails Conservancy projects that shifting short trips from driving to walking and biking via connected active transportation infrastructure could help generate a return on investment of $73 billion to $138 billion per year in the United States if connected to public transit systems. In Alaska, the total potential economic benefits associated with the ASATP’s goal of doubling walking are estimated to be approximately $37 million per year, while doubling bicycling would generate an estimated $17 million in economic benefits annually, according to the ASATP.
These estimates are considered conservative, because they primarily account for direct benefits that can be quantified in monetary terms. The estimates do not fully account for localized aggregate health, transportation savings, reduced congestion, and environmental impacts of complete walking and bicycling networks. This implies that statewide walking and bicycling economic benefits, when fully accounted for, may well exceed the totals listed.

Performance Measures

The ASATP has set a goal to double the walking and bicycling portions of the mode share in each region. The factors influencing whether people choose to walk or bicycle will vary based on existing active transportation networks, winter and summer maintenance, and their geographic context. Performance measures are used by DOT&PF to track progress toward achievement of goals and objectives in the ASATP as shown in Table 12.

### Table 12. ASATP Performance Measures

<table>
<thead>
<tr>
<th>Goal Area</th>
<th>Performance Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Goal Area One</strong> SAFETY</td>
<td>PM 1.1 Reduction in the number of fatal or serious injury collisions involving bicyclists and pedestrians in the last five years, as both a rolling average and percentage of total collisions.</td>
</tr>
<tr>
<td><strong>Goal Area Two</strong> HEALTH</td>
<td>PM 2.1 Percent change in average minutes of physical activity per day per capita over a five-year period, as measured by the Alaska Department of Health and Social Services. PM 2.2 Percentage of health regions meeting Healthy Alaska Benchmarks by 2020.</td>
</tr>
<tr>
<td><strong>Goal Area Three</strong> MAINTENANCE/SYSTEM PRESERVATION</td>
<td>PM 3.1 Miles of roadway adopted through Adopt-a-Road and Adopt-a-Highway initiatives.</td>
</tr>
<tr>
<td><strong>Goal Area Four</strong> CONNECTIVITY</td>
<td>PM 4.1 Miles of state-owned active transportation facilities, including trails, sidewalks, designated bicycle facilities, and road shoulders.</td>
</tr>
<tr>
<td><strong>Goal Area Five</strong> ECONOMIC DEVELOPMENT</td>
<td>PM 5.1 Number of communities with current active transportation plans and Safe Routes to Schools programs or plans. PM 5.2 Percent of commute trips completed by walking or bicycling, as determined by American Community Survey data.</td>
</tr>
</tbody>
</table>
Active Transportation Key Trends, Challenges, Threats and Opportunities

The elements identified below are primarily drawn from the ASATP and the project team’s experience with planning and design.

TRENDS:

- There is increased interest in active transportation and recreation in the more urban areas of Alaska. The COVID-19 pandemic has contributed to this. Anchorage, which is the only city that has permanent counters, recorded an over 100 percent increase on active transportation trips between 2017 and 2020.
- DOT&PF, AMATS, and FAST Planning have recently updated their active transportation plans, capturing recent national design guidance, public input, and policy and project recommendations.
- Residents of rural communities will continue to rely on active transportation to access services, employment, and other modes such as air and ferry travel.
- Pedestrian and bicycle injury and fatal crashes are rising.
- Special users, including pedestrians and bicyclists, are an emphasis area of the SHSP.

CHALLENGES:

- There is no statewide data set of pedestrian and bicycle facilities or volumes. This hinders an agency’s ability to make informed decisions regarding facility needs and priorities. Pedestrian and bicycle crashes are also likely underreported, especially in rural areas.
- Weather creates difficult conditions for walking and bicycling, especially in the winter months. The availability and effectiveness of winter maintenance varies across the state. With decreasing state funding, maintaining these facilities will become more difficult.
- The distance between communities can make walking and bicycling impractical for intercommunity and/or regional connections.
- Federal funding disbursements are subject to change. The state currently relies heavily on federal funds. Any changes to federal funding amounts or programs could affect DOT&PF’s ability to meet its goals.
- Chapter 12 of the Alaska Highway Preconstruction Manual (HPCM) covering Non-Motorized Transportation has not been updated since 2005 and would benefit from incorporating more recent guidance and standards from FHWA, American Association of State Highway and Transportation Officials (AASHTO), and other entities. The HPCM references outdated versions of documents:
  - The 1999 version of the AASHTO Guide for the Development of Bicycle Facilities, which is no longer the current version of the guide.
The 1992 FHWA “Selecting Roadway Design Treatments to Accommodate Bicyclists,” which was superseded by the 2019 FHWA “Bikeway Selection Guide” and numerous other guidance documents.

HPCM Section 1220 governing pedestrian facilities is unused, but currently under development.

OPPORTUNITIES:

- The ASATP specifies several laws, policies, and procedures that could enhance the safety of all road users, such as a complete streets policy, a safe passing distance law, and a vulnerable user law. Statewide groups are actively petitioning for implementation of ASATP law recommendations.
- The ASATP sparked the first steps towards a statewide active transportation coalition that meets monthly. The coalition currently has four working groups advocating for safer active transportation facilities and networks.
- DOT&PF is in the process of creating an internal working group focusing on challenges related to statewide active transportation, such as winter maintenance and gaps in facilities.
- There is an opportunity to focus on connecting different modes of transportation with pedestrian and bicycle facilities to accommodate residents and visitors. For example, in rural hub communities, active transportation infrastructure connects people who do not have vehicles to services and/or seasonal employment.
Transit

Public transportation plays a vital role in the state transportation network, especially for transportation-disadvantaged populations. Many public transportation trips connect to other modes. This could mean a walk or bike ride to a local public transportation stop or a connection to a regional option, such as rail, ports, ferries, or buses.

Figure 53 shows which communities provide public transportation services and what types of services are available. Intercommunity public transportation is limited to the Alaska Railroad, Tetlin Village Council, Soaring Eagle Transit, Interior Alaska Bus Line, Seward Bus Line, and the AMHS Ferry Route. Most transit services are local, typically staying within the community boundary. Most local services are demand-response, which tend to be operated in smaller, less-dense communities. Larger and denser communities, such as Fairbanks and Anchorage, operate more types of service, including fixed-route.
Figure 53. Public Transportation Services in Alaska

Transit System Type
- Fixed Route
- Demand-Response
- Local/Tribal
- Purchase of Services

May 2021
Data Source: Alaska DOT&PF
Table 13 shows public transportation services in Alaska, the corresponding community or communities served, and several characteristics of these services. This table reflects information from the most recent year of available National Transit Database (NTD) data, 2018, and does not include providers who do not receive federal funding.

### Table 13. Public Transportation Services

<table>
<thead>
<tr>
<th>Provider Name</th>
<th>Communities Served</th>
<th>Annual Revenue Hours</th>
<th>Annual Rides</th>
<th>Average Rides Per Hour</th>
<th>Number of Vehicles in Fleet</th>
<th>Average Age of Fleet (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchorage</td>
<td>Anchorage</td>
<td>269,403</td>
<td>3,566,747</td>
<td>13</td>
<td>162</td>
<td>17</td>
</tr>
<tr>
<td>City and Borough of Juneau (CB Juneau)</td>
<td>Juneau</td>
<td>59,327</td>
<td>1,068,131</td>
<td>18</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>Railroad</td>
<td>Fairbanks - Seward</td>
<td>47,576</td>
<td>478,140</td>
<td>10</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Ketchikan Gateway Borough (GB)</td>
<td>Ketchikan</td>
<td>26,711</td>
<td>404,717</td>
<td>15</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Valley Transit</td>
<td>Mat-Su Valley - Anchorage</td>
<td>18,024</td>
<td>62,037</td>
<td>3</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Central Area</td>
<td>Sterling, Kaslof, Nikiski, Kenai, Soldotna</td>
<td>12,547</td>
<td>35,389</td>
<td>3</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>Sitka Tribes</td>
<td>Sitka</td>
<td>9,984</td>
<td>51,504</td>
<td>5</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>Sunshine</td>
<td>Willow, Wasilla</td>
<td>9,221</td>
<td>16,188</td>
<td>2</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Glacier Valley</td>
<td>Girdwood</td>
<td>7,410</td>
<td>88,987</td>
<td>12</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fairbanks</td>
<td>Fairbanks</td>
<td>7,093</td>
<td>199,666</td>
<td>28</td>
<td>37</td>
<td>24</td>
</tr>
<tr>
<td>Gulkana Village Council</td>
<td>Gulkana</td>
<td>5,122</td>
<td>8,055</td>
<td>2</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Catholic Community Service (CCS) Sitka</td>
<td>Sitka</td>
<td>4,674</td>
<td>8,772</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Senior Kodiak</td>
<td>Kodiak</td>
<td>3,642</td>
<td>21,083</td>
<td>6</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Bethel</td>
<td>Bethel</td>
<td>3,634</td>
<td>25,058</td>
<td>7</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Kenaitze Indian Tribe</td>
<td>Kenai</td>
<td>3,323</td>
<td>4,671</td>
<td>1</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Provider Name</td>
<td>Communities Served</td>
<td>Annual Revenue Hours</td>
<td>Annual Rides</td>
<td>Average Rides Per Hour</td>
<td>Number of Vehicles in Fleet</td>
<td>Average Age of Fleet (Years)</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>------------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Chickaloon Native Village</td>
<td>Chickaloon</td>
<td>3,041</td>
<td>2,926</td>
<td>1</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Interisland Ferry</td>
<td>Hollis - Ketchikan</td>
<td>2,541</td>
<td>42,237</td>
<td>17</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Gwichyaa Zhee Tribal Transit Service</td>
<td>Fort Yukon</td>
<td>1,883</td>
<td>8,883</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ketchikan Indian Community</td>
<td>Ketchikan</td>
<td>1,602</td>
<td>8,468</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Ninilichik Village</td>
<td>Ninilichik</td>
<td>1,470</td>
<td>400</td>
<td>0</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Native Village of Noatak</td>
<td>Noatak</td>
<td>1,073</td>
<td>2,000</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Hydaburg Cooperative Association</td>
<td>Hydaburg</td>
<td>682</td>
<td>1,153</td>
<td>2</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Nome Eskimo Community</td>
<td>Nome</td>
<td>570</td>
<td>3,938</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Seldovia Village Tribe</td>
<td>Seldovia</td>
<td>323</td>
<td>11,188</td>
<td>35</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Manley Village Council</td>
<td>Manley Hot Springs</td>
<td>140</td>
<td>59</td>
<td>0</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Native Village of Unalakleet</td>
<td>Unalakleet</td>
<td>134</td>
<td>241</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Interior Alaska Bus Line</td>
<td>Anchorage, Palmer, Sheep Mountain, Eureka, Glennallen, Chistochina, Slana, Mentasta, Tok, Northway, Dot Lake, Delta Junction, and Fairbanks</td>
<td>n/a</td>
<td>1,903</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>City and Borough of Juneau (CB Juneau)</td>
<td>Juneau</td>
<td>59,327</td>
<td>1,068,131</td>
<td>18</td>
<td>35</td>
<td>5</td>
</tr>
</tbody>
</table>
Revenue and Ridership Trends

Revenue and ridership trends for the most recent years of available NTD data (2007–2018) are presented below. These data are presented for all Section 5307 and Section 5311 providers. Section 5307 funds are for urbanized areas (population 50,000 or greater) and support Anchorage, Fairbanks, vRide, and the Alaska Railroad. Section 5311 funds are for rural areas (under 50,000 people), such as Juneau and the Mat-Su Valley, as well as public transportation provided by tribes, or Tribal Transit.

Figure 54 presents the vehicle revenue hours trend for Section 5307 and Section 5311 agencies. Overall, revenue hours have increased despite a slight decrease in 2017 and 2018 for Section 5311 providers. Between 2011 and 2018, the annual vehicle revenue hours averaged near 500,000. In general, urban providers are more stable in the service they provide due to larger, typically more consistent funding pools to match federal grants.

Figure 54. Vehicle Revenue Hours Trend, Section 5307 and 5311 Providers (2007-2018)
Rural area and tribal transit providers face more change on an annual basis and have experienced an overall decrease in revenue since 2015. The inconsistent trend shows that rural providers are a lot more volatile due to smaller, sometimes unstable funding sources. This makes it more difficult to match federal funding.

The next series of figures present ridership trends by provider type.

- For all providers who receive federal funding, ridership was increasing up until 2012 and then started to decrease in 2013. This correlates with the decreasing population in the state and nationwide trends often linked to the decrease in the cost of gasoline\textsuperscript{M}.
- Urbanized area (Section 5307) providers experienced an increase in ridership up until 2012 and a decline starting in 2013. Anchorage is the largest contributor to the overall decline, which is directly related to a significant decline in the city’s population since 2013. Railroad ridership did not decline in these years due to a strong tourist economy.
- Rural area and tribal transit (Section 5311) providers experienced a decline in service in recent years, but not as significant as urban communities did. Many rural public transportation agencies provide demand-response services for grocery and medical trips, and often restrict their use to the elderly and people with disabilities who rely on these services.
- Urban providers and public transportation systems in denser places tend to have higher associations to commute travel and less-dependent public transportation riders, who may choose to use private automobiles or relocate for work. Despite the overall economic decline in Alaska, those reliant on demand-response services for essential travel still need to make trips.
Figure 55. Ridership Trends by Provider (2007-2018)

Funding sources for public transportation providers include federal, state, and local sources. Figure 56 shows funding by source and provider, as reported to the NTD. Notably, most providers’ funding primarily consists of federal funds, with smaller providers having little in state or local funding to use as a local match. The fact that many federal grant programs require a local match puts public transportation providers in Alaska at a disadvantage, as they can’t leverage match-required funding sources. Additionally, minimal state or local funding can result in volatility if a provider is dependent on few funding sources. Tribal Transit relies heavily on federal funding as well, and is sensitive to changes at the federal level. Larger providers, such as Anchorage, Fairbanks, and Juneau tend to have majority local funding to pay for their services.
Figure 56. 2018 Funding Source by Type and Provider
Current public transportation conditions and performance data were taken from the most recent public transportation plans in Anchorage, Fairbanks North Star Borough (FNSB), and Juneau. Alaska’s public transportation providers generally operate consistently with other providers nationwide. Key performance findings include:

- **Ridership:** Demand-response services, which are often found in Alaska’s rural communities, typically generate two to four rides per hour nationwide. Systemwide rides per hour for Urbanized Areas with populations between 50,000 and 200,000 average eight rides per hour, and areas with populations of 200,000 to 1 million average 15 rides per hour. Available NTD data indicated Alaska public transportation agencies generally meet or exceed these averages. The fixed-route public transportation system in Anchorage has stayed above the forecasted rate of decline in weekday average ridership and has observed an increase of 17.2 percent on Sundays. Based on the most recent Juneau operations analysis, fixed-route ridership supports an average of 29.3 trips per capita—relatively high compared to peers and likely related to tourism.

- **Amount of Service Provided:** While urbanized area providers have generally increased their service hours annually, rural area providers have decreased them in recent years. In 2017, Anchorage redesigned its fixed-route and paratransit system to include expanded service hours to midnight on weekdays for fixed routes; more frequent arrival times for fixed routes; and an expanded core service area and extended operation hours for paratransit. The FNSB fixed route and paratransit services have noted inadequate service and availability beyond a ¾-mile radius of service areas.

- **Fleet Age:** The nationwide expected useful life for public transportation vehicles is typically 12 years. Several public transportation agencies’ average age of fleet exceeds 12 years. Their public transportation fleets may have a higher expected useful life (EUL) than the national typical fleet, but generally this indicates that agencies are in need of faster fleet replacement.
Transportation Assessment
Alaska Moves 2050 | Long-Range Transportation Plan & Freight Plan

Transit Key Trends, Challenges, and Opportunities
A review of the most recent public transportation plans in Anchorage, Fairbanks, and Juneau, and the background and trends data were used to determine strengths and weaknesses with existing public transportation services in Alaska. The reviewed public transportation plans primarily focus on fixed-route and paratransit services.

TRENDS:
- Public transportation plays a vital role in the state transportation network, especially for transportation-disadvantaged populations.
- Ridership is trending downward statewide.

CHALLENGES:
- Funding for maintenance, capital, and operations projects is a challenge. Few public transportation systems are currently operated with a dedicated funding source. Public transportation providers in urban areas have identified the need to evaluate the fare structure of their systems to determine if fares are equitable and sufficient to support capital, maintenance, and operational needs. Providers that rely on state sources experience difficulties as the overall economy fluctuates and state revenue declines.
- Low population densities in both urban and rural service areas make efficient spatial connectivity difficult.
- It is a challenge recruiting professional staff with public transportation experience, and in rural areas, it can be difficult to retain and recruit experienced administrative and maintenance staff.

OPPORTUNITIES:
- Improving connectivity to other modes, including active transportation, rail and ferries and ports, will make transit an attractive option for more people.
- Nearly every public transportation rider accesses a bus stop by walking or biking. Providing safe, comfortable, and convenient access is crucial to the success of a public transportation system and user experience.
- Continuously monitoring performance can help DOT&PF adapt to the changing needs and demands for public transportation. COVID-19 impacts to commute patterns, demographic trends, and remote work are yet to be seen.
- Seeking opportunities for new or expanded local and state stable funding sources to match and leverage federal funding can help stabilize public transportation services.
Aviation

Alaska’s aviation system is unlike any other in the United States. By far the largest in North America, it consists of 765 registered private and public use airports, heliports, and sea plane bases as of 2021.

Alaska’s airports support the movement of people and commerce in ways that roads support similar services in most other states. More than 80 percent of Alaskan communities are inaccessible by the road system and depend on air access to provide basic needs such as medical care and supplies, food, and nearly all mail delivery.

A 2019 economic impact study prepared by DOT&PF estimated that Alaska’s airports contribute $3.8 billion and supply more than 35,000 jobs (7.8 percent of total state employment) to the state’s economy annually. The report determined that aviation activity at ANC ANC alone supports 15,500 jobs, equating to 1 in 10 jobs in Anchorage. In addition, 40 percent of aviation’s economic contribution and 25 percent of jobs are connected to the Rural Airport System (RAS).

DOT&PF owns and operates 237 out of 394 public use airports, as reported by DOT&PF staff on 2/25/21. Total count fluctuates year to year. Over 370 private landing facilities have been registered with the Federal Aviation Administration (FAA). Thousands of other private landing facilities and lakes are not registered with FAA.
Alaska has 25 Part 139 certified airports. Federal regulations (14 CFR Part 139) require FAA to issue airport operating certificates to airports that:

- Serve scheduled and unscheduled air carrier aircraft with more than 30 seats.
- Serve scheduled air carrier operations in aircraft with more than nine seats but fewer than 31 seats.
- As required by the FAA Administrator.

Table 14 provides a list of these airports. However, uniquely in Alaska, statutory authority of Part 139 doesn’t apply to airports serving aircraft with fewer than 30 seats. Alaska has many other airports serving various forms of commercial service. Part 139 certificated airports have more stringent FAA standards due to size and scope of aeronautical activity. There are 311 certified air carriers providing commercial and on-demand services across the state.Ixiv

### Table 14. Part 139 Certificated Airports

<table>
<thead>
<tr>
<th>City</th>
<th>Airport Name</th>
<th>Airport Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adak Island</td>
<td>Adak</td>
<td>ADK</td>
</tr>
<tr>
<td>Bethel</td>
<td>Bethel</td>
<td>BET</td>
</tr>
<tr>
<td>Cold Bay</td>
<td>Cold Bay</td>
<td>CDB</td>
</tr>
<tr>
<td>Deadhorse</td>
<td>Deadhorse</td>
<td>SCC</td>
</tr>
<tr>
<td>Dillingham</td>
<td>Dillingham</td>
<td>DLG</td>
</tr>
<tr>
<td>Fairbanks</td>
<td>Fairbanks International</td>
<td>FAI</td>
</tr>
<tr>
<td>Gustavus</td>
<td>Gustavus</td>
<td>GST</td>
</tr>
<tr>
<td>Homer</td>
<td>Homer</td>
<td>HOM</td>
</tr>
<tr>
<td>Juneau</td>
<td>Juneau International</td>
<td>JNU</td>
</tr>
<tr>
<td>Kenai</td>
<td>Kenai Municipal</td>
<td>ENA</td>
</tr>
<tr>
<td>Ketchikan</td>
<td>Ketchikan International</td>
<td>KTN</td>
</tr>
<tr>
<td>King Salmon</td>
<td>King Salmon</td>
<td>AKN</td>
</tr>
<tr>
<td>City</td>
<td>Airport Name</td>
<td>Airport Code</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Kodiak</td>
<td>Kodiak</td>
<td>ADQ</td>
</tr>
<tr>
<td>Cordova</td>
<td>Merle K (Mudhole) Smitch</td>
<td>CDV</td>
</tr>
<tr>
<td>Nome</td>
<td>Nome</td>
<td>OME</td>
</tr>
<tr>
<td>Peterburg</td>
<td>Petersburg James A Johnson</td>
<td>PSG</td>
</tr>
<tr>
<td>Kotzebue</td>
<td>Ralph Wein Memorial</td>
<td>OTZ</td>
</tr>
<tr>
<td>Red Dog</td>
<td>Red Dog (Private)</td>
<td>DGG</td>
</tr>
<tr>
<td>Sand Point</td>
<td>Sand Point</td>
<td>SDP</td>
</tr>
<tr>
<td>Sitka</td>
<td>Sitka Rock Gutierrez</td>
<td>SIT</td>
</tr>
<tr>
<td>Anchorage</td>
<td>Ted Stevens Anchorage International</td>
<td>ANC</td>
</tr>
<tr>
<td>Unalaska</td>
<td>Unalaska</td>
<td>DUT</td>
</tr>
<tr>
<td>Valdez</td>
<td>Valdez Pioneer Field</td>
<td>VDZ</td>
</tr>
<tr>
<td>Utqiagvik</td>
<td>Wiley Post-Will Rogers Memorial</td>
<td>BRW</td>
</tr>
<tr>
<td>Wrangell</td>
<td>Wrangell</td>
<td>WRG</td>
</tr>
<tr>
<td>Yakutat</td>
<td>Yakutat</td>
<td>YAK</td>
</tr>
</tbody>
</table>

Source: FAA Airport Database Information Portal (ADIP), May 2021.

The airports are very diverse in terms of size and use. Within the Alaska Aviation System Plan (AASP), airports are grouped into classifications based on their roles and functions within the system. These classifications help DOT&PF benchmark statewide initiatives and prioritize airport funding and investments. Airports fall into one of four state system plan roles as described in Table 15. Figure 57 depicts the location of public and private airports in the system.
<table>
<thead>
<tr>
<th>Classification</th>
<th>Number of Airports</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>International</td>
<td>• 3 Total</td>
<td>Airports that serve at least 0.05 percent of the annual passenger boardings in the U.S. and are classified by the FAA as a small or medium hub</td>
</tr>
<tr>
<td>Regional</td>
<td>• 28 Total</td>
<td>Public use airports, heliports, or seaplane bases that serve as an economic or transportation hub for more than one community, indicated by having at least three of the following characteristics: at least 10,000 annual passenger boardings; an air carrier hub, a postal hub or more than 2 million pounds of cargo handled annually; scheduled passenger service in aircraft with at least 30 seats; a health facility serving two or more communities; a primary or secondary fire tanker base; a U.S. Coast Guard air station, air support facility, or forward operating station.</td>
</tr>
<tr>
<td>Community</td>
<td>• 164 Total</td>
<td>Public use airports, heliports, or seaplane bases that serve as the main air transportation facility for an individual community, providing, at a minimum, basic health, safety, and emergency needs. The community must have a minimum year-round population of at least 25 and a public school. The community airport must be at least a one-hour drive (over year-round accessible road) from an international, regional, or other community airport. There are two sub-classes of community airports:</td>
</tr>
<tr>
<td></td>
<td>• 18 On Road</td>
<td>Off-Road Community Class—serves a community that lacks access to the interstate road system</td>
</tr>
<tr>
<td></td>
<td>• 146 Off Road</td>
<td>On-Road Community Class—serves a community with access to the interstate road system</td>
</tr>
<tr>
<td>Local</td>
<td>536 Total</td>
<td>Airports, heliports, or seaplane bases that accommodate mostly general aviation activity. There are three sub-classes of local airports:</td>
</tr>
<tr>
<td></td>
<td>• 11 NPIAS High Activity</td>
<td>NPIAS High Activity—airports included in the NPIAS and has at least 20 based aircraft</td>
</tr>
<tr>
<td></td>
<td>• 56 NPIAS Low Activity</td>
<td>NPIAS Low Activity—airports included in the NPIAS and has fewer than 20 based aircraft</td>
</tr>
<tr>
<td></td>
<td>• 469 Non-NPIAS</td>
<td>Non-NPIAS—airports not assigned to another classification</td>
</tr>
</tbody>
</table>

Note: Total counts represent those reported in 2019.

The Alaska International Airport System (AIAS) is made up of FAI and ANCANC. AIAS has a relatively broad customer base consisting of airlines (international and domestic), air cargo transfer operators, and commercial passenger airlines. Alaska’s third international airport is Juneau International Airport (JNU). JNU is owned and operated by the City and Borough of Juneau and is not part of the state-owned airport system.

Table 16 identifies the top 15 airports ranked by passenger enplanements in 2019 and a comparison to 2018 statistics. Complete enplanement statistics for 2020 are not fully available as of May 2021 for these airports. The AIAS estimates a greater than 60 percent reduction in enplanements at ANC and FAI I in 2020 when compared to 2021. In 2019, ANC ranked second in the nation for on-time departures, with 89 percent of flights departing on time and 84 percent arriving on time.
### Table 16. Top 15 Airports by Passenger Enplanements

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rank</th>
<th>Airport ID</th>
<th>City</th>
<th>Airport Name</th>
<th>2019 Enplanements</th>
<th>2018 Enplanements</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>ANC</td>
<td>Anchorage</td>
<td>Ted Stevens Anchorage International</td>
<td>2,713,843</td>
<td>2,642,607</td>
<td>2.70%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>FAI</td>
<td>Fairbanks</td>
<td>Fairbanks International</td>
<td>562,420</td>
<td>549,289</td>
<td>2.39%</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>JNU</td>
<td>Juneau</td>
<td>Juneau International</td>
<td>459,191</td>
<td>440,277</td>
<td>4.30%</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>BET</td>
<td>Bethel</td>
<td>Bethel</td>
<td>160,874</td>
<td>160,110</td>
<td>0.48%</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>KTN</td>
<td>Ketchikan</td>
<td>Ketchikan International</td>
<td>137,090</td>
<td>135,389</td>
<td>1.26%</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>ENA</td>
<td>Kenai</td>
<td>Kenai Municipal</td>
<td>95,239</td>
<td>93,889</td>
<td>1.44%</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>SIT</td>
<td>Sitka</td>
<td>Sitka Rocky Gutierrez</td>
<td>90,839</td>
<td>87,119</td>
<td>4.27%</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>ADQ</td>
<td>Kodiak</td>
<td>Kodiak</td>
<td>85,655</td>
<td>81,562</td>
<td>5.02%</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>SCC</td>
<td>Deadhorse</td>
<td>Deadhorse</td>
<td>71,822</td>
<td>43,655</td>
<td>64.52%</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>OTZ</td>
<td>Kotzebue</td>
<td>Ralph Wien Memorial</td>
<td>67,876</td>
<td>69,070</td>
<td>-1.73%</td>
</tr>
<tr>
<td>.11</td>
<td>11</td>
<td>OME</td>
<td>Nome</td>
<td>Nome</td>
<td>65,087</td>
<td>64,122</td>
<td>1.50%</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>HOM</td>
<td>Homer</td>
<td>Homer</td>
<td>46,367</td>
<td>46,867</td>
<td>-1.07%</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>BRW</td>
<td>Barrow</td>
<td>Wiley Post-Will Rogers Memorial</td>
<td>46,289</td>
<td>46,450</td>
<td>-0.35%</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>AKN</td>
<td>King Salmon</td>
<td>King Salmon</td>
<td>44,244</td>
<td>44,131</td>
<td>0.26%</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>DLG</td>
<td>Dillingham</td>
<td>Dillingham</td>
<td>35,486</td>
<td>34,496</td>
<td>2.87%</td>
</tr>
</tbody>
</table>

Alaska’s geographic position makes it an ideal international gateway for air cargo and commerce. Approximately 90 percent of the industrialized northern hemisphere is within a 9.5-hour flight of Anchorage. Significant amounts of cargo traffic are routed through ANC and FAI. ANC, the larger of the two, is the fifth largest airport in the world for cargo throughput and the second largest in the United States for landed weight. It is also a critical technical refueling stop for international cargo flights. Table 17 shows cargo landed weight for both airports.

Table 17. All-Cargo Airports Landed Weight

<table>
<thead>
<tr>
<th>Rank</th>
<th>Airport Name</th>
<th>City</th>
<th>2019 Landed Weight (lbs.)</th>
<th>2018 Landed Weight (lbs.)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ted Stevens Anchorage Int.</td>
<td>Anchorage</td>
<td>18,306,699,196</td>
<td>18,413,943,946</td>
<td>-0.58%</td>
</tr>
<tr>
<td>121</td>
<td>Fairbanks Int.</td>
<td>Fairbanks</td>
<td>101,471,972</td>
<td>108,927,136</td>
<td>-6.84%</td>
</tr>
</tbody>
</table>


DEFINITIONS

All-cargo operations are dedicated to the exclusive transportation of cargo, and do not include aircraft carrying passengers that also may be carrying cargo.

Aircraft landed weight is the certificated maximum gross landed weight of the aircraft as specified by aircraft manufacturers.

Landed Cargo Weight is based on revenue generating weight (as opposed to fuel weight) measured in tons: A revenue ton enplaned is one ton of revenue cargo (freight or mail) loaded on an aircraft for one flight identified by the flight number.

In 2020, TSAIA set a record for landed cargo weight at 6.96 billion pounds (or 3.48 million tons)
FAI also serves as a diversionary airport for ANC. It has ample terminal area and airfield facilities to accommodate passengers and cargo aircraft during diversionary events and is capable of handling 50 to 100 percent of the ANC technical stop cargo traffic without creating airfield delay concerns.

Rural Airport System

Outside of the AIAS, the remaining airports are considered part of the RAS. The RAS consists of 237 commercial and general aviation airports owned by the DOT&PF. Local or tribal governments operate some DOT&PF-owned airports (e.g., Ketchikan) or own and operate passenger terminals on DOT&PF-owned airports (e.g., Cold Bay, Homer, Sand Point, and Unalaska). Non-DOT&PF airports within the RAS comprise public, military, and private aviation facilities, including:

- 388 public facilities, including 290 airports, 86 seaplane bases, and 12 heliports owned by municipalities and the federal government
- 21 military facilities, including 20 airports and one heliport owned by the U.S. Department of Defense
- 313 (known) private facilities, including 241 airports, 43 seaplane bases, and 29 heliports

The exact number of private facilities is difficult to determine due to the relative absence of land use controls and oversight, and the fact that many are not registered with the FAA in the Airport Master Record System.

AIRPORT DESIGN STANDARDS

Pavement Conditions Index (PCI). The Alaska State Legislature has established minimum PCI condition ratings of 70 PCI for runways and 60 PCI for taxiways and aprons. DOT&PF performs PCI surveys every three years on approximately one third of 55 selected airports within the system. Of the 237 airports owned and operated by the AK DOT&PF, 49 are paved and are subject to PCI ratings.

Airport Design Standards. As part of the continuous system planning process, DOT&PF has established a Design Standards Index to measure performance of various key FAA airport design standards at all AASP airports. As stated in the 2014 Alaska System Plan, these measures are:

- **Crosswind Coverage:** If wind coverage for a single runway is under 95 percent, the FAA recommends that the airport have a crosswind runway. This standard is shown as “not applicable” for airports with 95 percent or better wind coverage, but do not have a crosswind runway. Those with neither 95 percent wind coverage nor a crosswind runway do not meet this standard. Wind data is not available for 55 airports in the AASP and is shown as “data unavailable.”

- **Obstacle Free Zone (OFZ):** The OFZ is airspace centered on the runway centerline and extending 200 feet beyond each runway end. OFZ standards apply to the main runways of all airports included in the Design Standards Index.
- **Parallel Taxiway**: The standard is for airports with at least 20,000 annual operations to have a parallel taxiway, either full or partial. This standard is shown as NA at airports with fewer than 20,000 annual operations.

- **Runway Protection Zone (RPZ)**: The RPZ is a trapezoidal area extending from the runway ends, designed to enhance the protection of people and property on the ground. All airports were evaluated for both control of their RPZs and for compatible land uses. RPZ standards apply only to main runways.

- **Runway Safety Area (RSA)**: The RSA is part of an airport’s geometry and is a rectangular area centered on and surrounding the runway. RSA standards apply to the main runways at all airports.

- **Runway Visibility Zone (RVZ)**: The RVZ is an area between intersecting runways where an unobstructed sight line between points five feet above each runway is required. This standard only applies to airports with intersecting runways.

- **Threshold Siting Surface (TSS)**: The TSS is an imaginary airspace surface sloping up from the runway threshold. A compliant TSS is free of objects. TSS standards apply to the main runways of all airports included in the Design Standards Index.

Figure 58 shows the noncompliance ratings at airports as measured in the Alaska Aviation Database. Note, these benchmarks apply only to airports measured in the AASP.

**Figure 58. Non-Compliance with Airport Design Standards Index**

FEDERAL AND STATE FUNDING PROGRAMS

Funding sources for rural airports include FAA Airport Improvement Program (AIP) funds, Alaska’s General Fund, local airport sponsor funds, airport lease rates and fees, and other sources. FAA AIP funds invested annually into AIP projects varied between approximately $215 million in 2016 and $243 million in 2020. During that period, DOT&PF spent an additional $37 million annually on maintenance and operations for rural airports. In response to the COVID-19 pandemic, the DOT&PF accepted an additional $124 million in Coronavirus Aid, Relief, and Economic Security (CARES) Act funding to mitigate impacts of the pandemic on airport operations. The 2019 aviation economic impact study estimated that AIP spending alone contributes a total of $586 million in annual impact (on- and off-site impacts) and nearly 2,600 jobs.

More than 25 local public (non-DOT&PF) entities and agencies also sponsor airports. These organizations own and operate their own public-use airports. Although these airports compete with DOT&PF-owned airports for FAA AIP funding, they often partner with and receive funding from DOT&PF.

Communities also depend on two key programs that do not directly fund infrastructure projects but contribute to aviation activity at many airports, making freight and travel to and from remote communities efficient and affordable.

- **Alaska Bypass Program (ABS):** The ABS, introduced in 1972 by the U.S. Postal Service, allows palletized goods, largely foodstuffs, to reach rural communities by air using a hub-and-spoke network of airports. The ABS is critical to providing fresh food and basic supplies to communities that could not otherwise afford to ship goods at higher air freight prices. The ABS also results in more frequent air passenger service at lowered fares. The U.S. Postal Service determines which communities are included in this program.

- **Essential Air Service (EAS) Program:** The EAS program is a federally-directed program to provide air service to underserved communities stemming from the deregulation of the airline industry in 1978. EAS ensures a minimum level of commercial service to approximately 60 communities. Each community that is eligible for EAS must routinely apply for subsidized air service. In Alaska, the average subsidy per community was $357,927 compared to $2,553,332 in the lower 48 states.
Aviation Key Trends, Challenges, and Opportunities

TRENDS:

- No part of America’s economy has escaped the impact of the COVID-19 pandemic. In April 2020, rural air service within Alaska was impacted severely with a 90 percent service reduction resulting from the bankruptcy of the state’s largest regional air carrier. Although most rural communities also imposed travel restrictions during this period, the Governor’s Aviation Advisory Board focused efforts on addressing the immediate needs of communities impacted by this loss of service. The regional air carrier is operational again, however, this scenario could happen again, cutting off essential services to remote communities that do not have redundant transportation options.

- In comparison, the state’s AIAS cargo operations have fared better during the pandemic due to demand from Pacific regions and the shift of “belly cargo.” Although many passenger flights were cancelled or diminished, high-value cargo that traditionally flies in the belly of a passenger airplane was converted to freight shipments. As a result, ANC was at times the busiest airport in the U.S. during the months of May and April 2020 due to the increase in air freighters stopping for fuel.

CHALLENGES:

- As robust as the AIAS is, many of the weaknesses within the aviation system are related to the unique character of the region.
  - Outside of major cities, such as Anchorage and Fairbanks, lack of local supplies and infrastructure makes airport development challenging. Rural airports require shipping equipment and materials for construction, maintenance, or repair of remote sites. These locations often lack alternate means of year-round access such as roads or barge services. The remoteness, logistical challenges, and high costs associated with operating and maintaining such airports makes them less resilient.
  - The vast majority of RAS airports do not have the resources to provide active airport management, including airfield inspections and oversight of maintenance and capital improvements. These communities rely heavily on state and federal funding programs to provide a minimum level of service. In many rural villages, populations are declining, contributing to the challenges of providing air service.

OPPORTUNITIES:

- Moving forward there will continue to be opportunities to leverage Alaska’s ideal geolocation (specifically Anchorage and Fairbanks) within the worldwide aviation system. Forecasts of world growth provided in the FAA Aerospace Forecast Fiscal Years 2020-2040 indicate Asia regions led by India and China are expected to have the most significant worldwide GDP growth.
Alaska has a shortage of certified weather stations, which are under the purview of FAA. Weather stations enable development of instrument approach procedures that provide access to the airport during poor weather conditions. According to the 2017 Alaska Weather Equipment Needs Summary prepared by DOT&PF, there are only 135 FAA-certified weather stations. Combined with limited poor-weather instrument approaches at airports, this lack of proper equipment hampers safe and efficient movement of goods and people. The 2017 report encourages advocacy for FAA funding and support to establish an improved network of weather reporting stations and an appropriate budget to maintain these systems. According to the Alaskan Aviation Database (accessed May 14, 2021), $4.9 million is programmed for AWOS installations at various airports in 2021. DOT&PF has eight locations currently in design with construction planned for summer of 2021.

DOT&PF has also encouraged the following:

- Use of DOT&PF’s Capital Improvement Maintenance Program (CIMP) inspection and ranking process for system needs: airport components are rated using the CIMP review on an A to F rating system. Ratings of D or F are considered a deficiency that needs to be added to a future AIP project. To date, over 200 airports have been inspected under this program.
- Justify runway length at low-activity airports: FAA design guidelines dictate a minimum of 500 operations by the critical aircraft prior to justification of a runway extension. However, these guidelines limit choice of potential operators seeking to serve that market, including freight operators.
- Within the FAA AIP funding program, create goal-oriented metrics tied to percentage of funding prioritized to runway surfaces, safety, navigational aids, planning, etc.
- Identify critical freight systems airports along with available funding streams for freight-specific improvements.
Marine & Waterways

Marine transportation infrastructure, ports and the AMHS provide transportation for essential services, recreation, tourism, and economic development.

Alaska Ports

The DOT&PF does not own or operate ports. Most ports are either privately owned or are owned and operated by local municipalities.

The previous LRTP reported 476 ports and harbors serving communities, fishing fleets, and other commercial and recreational purposes. Of these, 58 are used for commercial purposes (Figure 59). Of the 58 commercial ports, five are listed by the USDOT in the top 150 busiest ports in the nation by volume (short tons) of products shipped both inbound and outbound: the Port of Alaska, the Port of Valdez, the Port of Nikiski, the Port of Unalaska, and the Delong Mountain Transportation System (DMTS).

DMTS is the port for Red Dog Mine. It is owned by AIDEA and operated by Teck Alaska, Inc. Kivalina is the nearest Alaska community to the mine site, but is not served by the DMTS port.
While DOT&PF does not own or operate ports, they do sponsor by statute the Harbor Facility Grant Program, designed “to provide financial assistance to municipal or regional housing authority owned harbor facilities.” The program is intended to recapitalize the local community port and harbor infrastructure, “furthering the sustainability of Alaska’s public harbor system.”

In 2019, Alaska ranked number 28 in the country for volume of goods shipped, at 37,488,000 short tons of cargo. Valdez is the largest shipping port, with a measured volume of 25,176,735 short tons. Most of this tonnage was petroleum products shipped to the ports of Tacoma and San Francisco for movement to refineries. The Port of Nikiski with 3,645,972 short tons is next, followed by the Port of Alaska with 2,828,417 short tons, DMTS at 2,770,614 short tons, and Port of Unalaska at 1,436,905 tons. Four out of five of these ports ship goods out of Alaska. The Port of Alaska is the only port with as majority of its cargo coming inbound.

This section introduces the top five ports and the total volume of shipping in/out of Alaska by the US DOT Bureau of Transportation Statistics (BTS). More detailed information on ports and associated freight will be included in the Freight Plan.

**Figure 59. Container Line Service Ports and Principal Ports**
A major challenge facing ports is decreasing shipping volumes and total number of 20-foot-equivalent units (TEUs). Figure 60 shows the trends in overall volumes for the state since 2015. Figure 61 shows this trend from 2015 to 2020.

**Figure 60. Overall Shipping Volumes (2015 to 2020)**
One of the causes for the decrease in total tonnage is related to the reduction in oil production on the North Slope and petroleum products shipped from Valdez and Nikiski Ports. When the TAPS was completed in 1977, 610,408 barrels of oil per day were shipped. Peak TAPS throughput reached over 2 million barrels per day in 1988. The lowest level throughput was in 2020, recorded at 480,199 barrels per day. Alyeska Pipeline company reports that roughly 20 tankers are berthed and filled from the Valdez Marine Terminal each month, but as the trend shows, the number of tons moved continues to ebb. A declining population may also be contributing to the downward trend at the Port of Alaska.

PORT OF ALASKA

The Municipality of Anchorage owns the Port of Alaska (POA). The POA is listed by the BTS as one of the top 25 container shipping ports in the nation, handling 388,000 TEUs in 2019. The Port of Alaska is a true multimodal port, connecting to the Alaska Railroad; the Alaska Highway System, via the Glenn and Seward highways; and ANC. It is also linked to the North Slope oil fields via Fairbanks and the Steese and Dalton Highways. The Port of Alaska is a Department of Defense commercial strategic seaport that protects U.S. power across Alaska, the Pacific Rim, and the Arctic, supporting all four major U.S. Department of Defense installations in the state. It handles half of all inbound fuel and freight, which is distributed statewide and consumed by 90 percent of the population, including:

- More than 80 percent of all vans and containers shipped into the Southcentral ports: some 1.66 million tons in 2019 (plus another 174,000 tons outbound)
• 1.47 million tons of refined petroleum products in 2019, plus another 802,000 tons of refined petroleum products that flowed through port facilities via pipeline. The vast majority flows via pipeline to support cargo aircraft servicing at ANC.

• 110,000 tons of bulk dry freight in 2019, including some 80 percent of all cement used statewide.

The port is undergoing a modernization program to upgrade critical infrastructure, known as the Port of Alaska Modernization Program (PAMP). The purpose of PAMP is not to expand the port—it is a reconstruction program to improve safety, reliability and cost-effective operations; improve resiliency to seismic and severe weather events; update facilities to meet current codes and standards and accommodate modern shipping operations; and optimize facilities to accommodate changing market needs.

PORT OF VALDEZ

The Port of Valdez is made up of the TAPS Marine Terminal, the Valdez Container Terminal, the AMHS terminal, Sea Otter Park, and a small boat harbor. It is a multimodal port connecting AMHS ferry passengers to the Alaska Highway System via the Richardson Highway. Passengers can also connect through the Valdez Pioneer Airport with connections to Anchorage, Fairbanks, Cordova, and many other Alaskan communities.

The Valdez Marine Terminal is owned and operated by the Alyeska Pipeline Service Company. This marine terminal is used to transfer crude oil from the TAPS to large outbound oil tankers. In 2020 there were 480,199 barrels of crude loaded onto tankers, down slightly from 490,366 barrels in 2019. The Valdez Container Terminal, owned and operated by the City of Valdez, handled 69,498 tons of cargo in 2017.

PORT OF NIKISKI

The Port at Nikiski imports and exports petroleum products and supports Cook Inlet oil and gas production. Approximately 3.6 million tons of crude oil made its way by ship to the Port of Nikiski, where it was offloaded and moved by pipeline to the Marathon oil refinery in Nikiski.

PORT OF UNALASKA

The Port of Unalaska, owned by the Unalaska Corporation and operated by community of Unalaska, is the largest fishing port by volume in the U.S., handling 173 million pounds of seafood, valued at $182 million (ranked third in U.S.). The port has held this position for the last 22 years.

DELONG MOUNTAIN TRANSPORTATION SYSTEM (DMTS)

The DMTS was constructed as a “public” facility/system to support the transport of large-scale shipments from major mining facilities in northern Alaska. The DMTS consists of a shallow water barge dock on the Chukchi Sea shore, and a 52-mile haul road to transport fuel and other bulk supplies to the Red Dog Mine/Mill and the transport of concentrates from the mine/mill to the port. Currently, the facility is used
only used by Teck Alaska Incorporated to support the Red Dog Mine, one of the world’s largest zinc mines, and the Northwest Arctic Borough’s largest industry.

**INLAND PORTS**

While the vast majority of waterborne freight tonnage is associated with deep-water coastal ports, Alaska also has the most inland waterway mileage of any state, with ports on the Yukon, Tanana, and other rivers. These smaller inland ports are vital links for many local communities.

**Port of Bethel**

The Port of Bethel is situated on the west bank of the Kuskokwim River approximately 80 nautical miles (nm) from its mouth and 58nm above Eek Island. The port is the distribution center for the Kuskokwim district and is used by ocean going vessels during the open season (summer months). A considerable amount of equipment is transshipped onto barges and river steamers for distribution to communities further upstream. It handles approximately 95,000 tons of cargo annually.

The port is also the receiving and transshipment center for petroleum products and barged freight for the Yukon-Kuskokwim Delta. The Kuskokwim area commercial salmon industry also relies on the Port for most of its infrastructure and processing requirements. Because the Yukon-Kuskokwim Delta is not connected to any other community by road or rail, the Bethel general cargo dock and staging area are critical to the shipment of freight. Types of freight shipped to and through the Port of Bethel includes construction equipment, construction material, (much of it gravel for roads and airport projects), fuel, vehicles, fishing skiffs/boats, fishing supplies, calcium chloride for dust control, recreational equipment (snow machines and ATVs).

**Port of Dillingham**

The Port of Dillingham is in the southwest region near the mouth of the Wood River, where it flows into Nushagak Bay. The port is owned by the City of Dillingham and serves commercial, freight, and recreational uses—operating a dock, a boat harbor, and several boat ramp facilities. The port’s harbor is the only protected harbor in the Bristol Bay watershed.

The port serves as a subregional hub for intermodal freight movement and is a major exporter of seafood products. In 2019, it handled nearly 25 million tons of freight with a quarter of this traffic carrying fish. The facility collects regional cargo to send to the Port of Unalaska/Dutch Harbor for national and international export and distributes inbound goods to the small communities in the Southwest. The Port of Dillingham is approximately two miles from the Dillingham Airport, which provides both passenger and freight cargo services to ANC.
Port Key Trends, Challenges, and Opportunities

**TRENDS:**

- Top Alaska export destinations include countries on the Pacific Rim. Top international export destinations—in rank order—include: China, Korea, Japan, Canada, and Australia. Other major trading partners include the Netherlands, Germany, France, and Taiwan. China remains as Alaska’s top international export market, with nearly a quarter of the state’s total, while South Korea and Japan together represent close to a third.
- For the six-year period ending 2020, overall freight tonnage at the Port of Alaska has increased by nearly 25 percent. The Port handles half of Alaska’s inbound freight movement, which is then consumed by nearly 90 percent of the state’s population.

**CHALLENGES:**

- After peaking at 2.1 million barrels a day in 1988, oil volumes through the TAPS have steadily declined, reaching a low of 480,000 barrels in 2020. The Alyeska Pipeline Service Company is working to respond to challenges posed by declining throughput to sustain the pipeline as a viable component of Alaska’s economy and the nation’s energy infrastructure.
- Port infrastructure is aging and funding for improvements is limited.

**OPPORTUNITIES:**

- Strengthening connections between ports and roadways, rail and air service will result in the more efficient movement of goods.
- Ongoing environmental changes may make the Northwest Passage more viable as a future shipping lane. As less ice forms over the Arctic and forms later each year, opportunities for shipping over the Northwest Passage open up, significantly cutting shipping time between Asia and Europe. As more traffic moves through the Bering Strait for Baffin Bay, U.S. Coast Guard and U.S. Navy missions will orient toward the Arctic. This also offers an opportunity for the Ports of Alaska, Nome, and Unalaska as the U.S. Department of Defense and Department of Homeland Security look for ports to support and supply their ships and crews. There were 27 transits in 2019, up from 2018, but down from 2017, which saw 31 transits.xci

**Alaska Marine Highway System (AMHS)**

The AMHS provides marine transportation services to connect coastal communities. It is currently the only marine route recognized as a National Scenic Byway and All-American Road. The AMHS system stretches over roughly 3,500 miles of coastline, from Bellingham, Washington, to Unalaska in the Aleutian Island chain, and provides service to 35 communities. The AMHS is a line agency of DOT&PF and receives funding from the state for system operations and maintenance.
In addition to the AMHS, there are also non-state-operated ferry services, including the Inter-Island Ferry Authority in Southeast Alaska, Ketchikan International Airport ferry service, and Seldovia Bay M/V Kachemak Voyager.

Together, the state and independent ferry services form an important component of Alaska’s transportation system, serving communities in Southeast Alaska, Prince William Sound, Kodiak Island, and the eastern Aleutian Islands.

According to an analysis of the AMHS system published by the McDowell Group in 2016, The Economic Impact of the Alaska Marine Highway System, the key benefits of the service include:

- Reduced cost of living by giving residents of smaller communities access to lower-priced goods and services available in larger, nearby communities
- Employment, total spending, and return on investment:
  - AMHS employment and spending resulted in 1,700 Alaska jobs ($103.7 million in wages) in 2014, including 1,017 direct jobs ($65 million in wages) and 683 indirect jobs ($38.7 million in wages).
  - AMHS economic activity resulted in total spending of $273 million in 2014, including $184.7 million in direct spending and $88.3 million in indirect spending.
  - The state’s General Fund investment of $117 million resulted in a total return on investment of $273 million: more than 2 to 1.
  - AMHS plays an important role in the tourism sector. The AMHS carries over 100,000 non-resident passengers annually.

Much has changed since 2016. A study commissioned by Governor Mike Dunleavy and published in October 2020 found, “For a variety of reasons, and despite best efforts by system employees and the mariners who operate the vessels, today the system operates an aging ferry fleet that is costly to maintain and operate, poorly matched to ferry route needs, with limited flexibility to adjust to changing circumstances. Equipment breakdowns, costly labor agreements, cumbersome procurement processes, and a recent surprise strike all highlight underlying systemic issues that pose sustainability risks to the system.”
Figure 62. Ferry Systems
FERRY SYSTEMS

The AMHS is described by DOT&PF as a two-part system: Southwest and Southeast.

The Southeast System

The Southeast System from Bellingham, Washington, in the south to Yakutat in the eastern Gulf of Alaska. Vessels serving the Southeast System include:

- M/V Columbia
- M/V Hubbard
- M/V LeConte
- M/V Lituya
- M/V Tazlina
- M/V Malaspina*
- M/V Matanuska

*As of January 2021, this vessel is in long-term layup status.

The Southeast Alaska communities served include:

- Angoon
- Bellingham, WA
- Gustavus
- Haines
- Hoonah
- Juneau
- Kake
- Ketchikan
- Metlakatla
- Pelican
- Petersburg
- Prince Rupert, B.C*
- Sitka
- Skagway
- Tenakee Springs
- Wrangell
- Yakutat

*Due to Canadian COVID-19 restrictions, the AMHS has ceased to serve Prince Rupert, B.C. since April 2020. There is no indication this service will return.
The Southwest System

The Southwest System runs from Cordova in the eastern Prince William Sound to Unalaska in the Aleutian Chain. Vessels serving the Southwest System include:

- M/V Aurora
- M/V Kennicott
- M/V Tustumena

+ M/V Kennicott serves both Southeast and Southwest with cross-gulf service

Southwest Alaska communities served by this system include:

- Akutan
- Chenega Bay
- Chignik
- Cold Bay
- Cordova
- False Pass
- Homer
- King Cove
- Kodiak
- Old Harbor
- Ouzinkie
- Port Lions
- Sand Point
- Seldovia
- Tatitlek
- Unalaska/Dutch Harbor
- Valdez
- Whittier

An Aging Fleet

The AMHS fleet is aging—three of the 11 AMHS vessels were built almost 60 years ago. Table 18 summarizes the ships that comprise the current fleet by name, year built, and age.

- The M/V Taku, one of the oldest vessels, was sold as excess in 2016, as its annual maintenance and operating costs exceeded economic viability.
- The Tazlina (2019) and the Hubbard (2019) were designed to operate with smaller crews and to be slightly more fuel-efficient. They were also built with the expectation that the Juneau Access Road and new ferry terminal would be constructed to Katzehin Bay. The ferries were slated to operate between Katzehin Bay, Haines, and Skagway. The ships were built with bow and stern doors to provide roll-on/roll-off loading and unloading capabilities which would also require new ferry docks in Haines and Skagway. None of these new facilities has been built and plans for their construction are on hold. As a result, both new ferries are being retrofitted
so they are compatible with existing dock structures. Additionally, the routes they were intended to sail as shuttle ferries require transit times that proved too long for regulatory compliance with crew rest requirements.

- In 2014, following a major service interruption the previous year, the importance of building an ocean-capable replacement vessel for the M/V Tustumena became a focus. Design for the M/V Tustumena replacement vessel is ongoing. The Tustumena is one of two ocean-class vessels and is the only vessel capable of serving all ports between Homer and Unalaska/Dutch Harbor. Initial design was completed in 2017, however the state is struggling with the estimated construction price of over $220 million. FHWA funds could be made available to defray construction costs, but with an annual federal highway program of just under $600 million, it is difficult to justify $50 to $60 million over four federal fiscal years when there are competing surface transportation needs throughout the state.

- The M/V Malaspina, one of the system’s oldest ships, has been placed in long-term lay-up status. The cost to maintain and operate this ship makes its economic viability questionable.

- Two other vessels, the M/V Chenega, and the M/V Fairweather, were sold for a combined $5.17 million in March 2021. The two sold vessels are fast ferries purchased in 2006. While these ships were popular with passengers, they were massive fuel consumers, costing almost a third more to operate in fuel costs alone. Special licensing for crews imposed unnecessary scheduling issues for AMHS leadership, and ongoing hull and engine difficulties made these ships misfits within an already struggling system.

### Table 18. Summary of AMHS Ferry Fleet

<table>
<thead>
<tr>
<th>M/V</th>
<th>M/V Aurora</th>
<th>M/V Columbia</th>
<th>M/V Hubbard</th>
<th>M/V Kennicott</th>
<th>M/V LeConte</th>
<th>M/V Lituya</th>
<th>M/V Malispina</th>
<th>M/V Matanuska</th>
<th>M/V Tazlina</th>
<th>M/V Tustumena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>44 years</td>
<td>47 years</td>
<td>2 years</td>
<td>23 years</td>
<td>47 years</td>
<td>17 years</td>
<td>58 years</td>
<td>58 years</td>
<td>2 years</td>
<td>57 years</td>
</tr>
</tbody>
</table>

Note: the M/V Malispina is currently in long term layup in Ward Cove
AMHS provides year-round and seasonally-scheduled ferry service. Since 2015, AMHS ferry schedules have varied from year to year, based on available funding levels and operating budgets. DOT&PF prepares an operating plan that is designed to meet the essential needs of the communities the AMHS serves, but they are statutorily required to operate within available funding while maintaining regulatory and safety standards for the vessels. Three types of vessels and three types of service are offered:

- **Mainline Service** is provided by the largest AMHS vessels. These vessels have larger carrying capacity for passengers and vehicles. They service routes that historically see the greatest traffic demand during the summer season from May to September. During this high season, mainline ferries operate 24/7 and have crew cabins. Typical mainline service runs from Bellingham, Washington, to Haines and Skagway in the North Lynn Canal, stopping at many Southeast communities. Other mainline routes include cross Gulf of Alaska route from Juneau to Homer via Whittier, and finally Homer to Unalaska.

- **Day Boat Service** also known as LeConte Class service provides service to smaller communities in Southeast and Southwest Alaska. These ships also maintain crew quarters to provide extended day service, but normally berth in port overnight.

- **Shuttle Service** provides service to specific designated routes. Three ships are currently designed to provide shuttle service: M/V Lituya between Ketchikan and Annette Bay, serving the community of Metlakatla; the M/V Hubbard and M/V Tazlina also known as Alaska Class ferries, provide service in the Lynn Canal between Juneau, Haines and Skagway.

The AMHS maintains its vessels during the fall, winter, and spring months due to lower demand. Annual maintenance takes at least six weeks per vessel. Vessels not needed to meet off-season schedules but not undergoing maintenance are placed in lay-up status. One ship, the M/V Malaspina, is listed in long-term lay-up status.

**Other Ferry Operators**

- The Inter-Island Ferry Authority (IFA) provides transportation to Prince of Wales Island communities in Southeast Alaska. The IFA fleet consists of two roll-on/roll-off passenger car ferries, the M/V Prince of Wales and the M/V Stikine. The IFA operates one route between Ketchikan and Hollis on Prince of Wales Island. IFA also fills in on the AMHS Annette Bay to Ketchikan service when the regular ferry is undergoing maintenance. xcv

- The Ketchikan Gateway Borough’s Transportation Services Department owns and operates the Airport Ferry System service between Gravina Island, home of the Ketchikan International Airport, to Revillagigedo Island, where the city of Ketchikan is located. The Ketchikan Gateway Borough owns two vessels, one that was built in 2013 (M/V Ken Eichner) and the other in 2001 (M/V Oral Freeman). Since 2017, DOT&PF has worked with the community on projects that will provide nearly $95 million in improvements to this system. xcvi

- The Seldovia Village Tribe operates the Seldovia Bay M/V Kachemak Voyager between Seldovia and Homer during the summer months. The vessel carries light freight and up to 150 passengers. The vessel was purchased and the service initiated by the Tribe as an economic development project for the benefit of the community of Seldovia. xcvi
Ferry ridership is reported by AHMS in its annual traffic volume reports. Ridership is broken down between Southeast and Southwest systems and passenger ridership and vehicle volumes are listed. Ferry volumes have been declining for roughly a decade, and, since 2015, have taken a significant turn downward. One major driver of traffic is the frequency of scheduled service AMHS is able to provide based on their authorized operating budget. However, even when service was increased in 2019, ridership continued on a negative trend. According to the AMHS operating plan for 2020-2021, ship weeks of service are planned at 205 weeks of service. Six of the 12 vessels AMHS owns are scheduled to provide service during the peak summer season.xcviii An additional challenge results from schedule reliability challenges, brought on by weather, mechanical failures, and in at least one case, failure of the State Legislature to fund the published schedule in 2016. Table 19 shows historical AMHS traffic trends as compared to scheduled ship weeks of service since 2012.

Table 19. Historical Traffic Volume vs. Ship Weeks Scheduled

<table>
<thead>
<tr>
<th>Year</th>
<th>Passengers</th>
<th>Vehicles</th>
<th>Ship Weeks Scheduled</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>337,774</td>
<td>115,448</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>319,004</td>
<td>108,478</td>
<td>391</td>
</tr>
<tr>
<td>2015</td>
<td>288,133</td>
<td>100,547</td>
<td>365</td>
</tr>
<tr>
<td>2016</td>
<td>258,042</td>
<td>98,969</td>
<td>342</td>
</tr>
<tr>
<td>2017</td>
<td>244,748</td>
<td>96,526</td>
<td>326</td>
</tr>
<tr>
<td>2018</td>
<td>No data</td>
<td>No data</td>
<td>318</td>
</tr>
<tr>
<td>2019</td>
<td>190,118</td>
<td>77,203</td>
<td>329</td>
</tr>
</tbody>
</table>

AMHS Key Trends, Challenges, and Opportunities

TRENDS:

- The AMHS provides critical marine transportation services to connect coastal communities.
- The current fleet is old and subject to challenging marine operating conditions. Despite the best efforts of ship crews and AMHS staff, the ferry system is not as reliable as it should or could be.
- Since 2016, AMHS traffic volumes are trending steadily downward, with 2019 passenger numbers 44 percent below 2012 volumes, and vehicle volume 33 percent below 2012 numbers. In recent years, farebox recovery dropped from about 50 percent of operating cost to about 30 percent.

CHALLENGES:

- AMHS is challenged today with operating and maintaining the system and providing reasonable levels of service at a cost the state can afford. This includes vessel refurbishment and recertification to keep vessels safe and compliant with federal regulatory standards and attractive to customers.
- The timing of AMHS budget approvals is tied to the state government’s fiscal year. Agency budget decisions are often not final until late spring. As a consequence, the AMHS, not knowing its budget, is unable to confidently plan and schedule summer ferry sailings more than a few months in advance.

OPPORTUNITIES:

Based on the challenges facing the system, the AMHS Reshaping Workgroup has outlined several needs and recommendations:

- A predictable governance model with marine operations and marine business expertise would be beneficial.
- The AMHS needs to secure a stable source of funding.
- It may be possible to partner with community groups and local and tribal authorities to identify opportunities for public-private partnerships to take over local ferry operations.
- The Northern Economic Report recommends taking advantage of existing and potential land-based (road/trail) infrastructure to reduce ferry route transit times and operating costs. Additional recommendations include:
  - Inserting the ferry terminal at Cascade Point into the AMHS ferry system to improve operational and capital planning. It would serve as base for dedicated ferry runs in Lynn Canal. It would also reduce Juneau-Haines and Juneau-Skagway
one-way sailing by about 30 miles and 2.1 hours. This would enable use of a 12-hour dayboat to service the route, reducing ferry operating cost and enhancing route revenue, if the route includes service between Skagway and Haines.

- Inclusion of Tenakee Springs to Hoonah overland access in AMHS ferry system planning. Service to Tenakee Springs today requires use of a 24-hour vessel, and traffic is passenger, not vehicles. Eliminating AMHS ferry service saves 2.1 route hours. This would enable a 14-hour dayboat with reduced cost to serve the remainder of the route.

- Terminating cross-gulf service at Whittier rather than Kodiak. Passengers continuing to Kodiak would travel by road from Whittier to Homer and the reverse from Kodiak to Whittier. The run between Whittier and Kodiak, which includes a stop at Homer, is redundant, as direct ferry service from Homer to Kodiak remains. This change could eliminate ferry service to Chenega Bay and reduce it to Seldovia and Port Lions.
The Alaska Railroad Corporation (ARRC) provides freight and passenger rail services throughout Southcentral and Interior Alaska. The ARRC is a state-owned corporation that is operated like a private business and is not under the purview of ADOT&PF.

ARRC must generate enough revenue from train and real estate services to cover workforce, operations, and infrastructure maintenance expenses. It has real estate holdings totaling approximately 36,000 acres. Of these, 14,000 acres are devoted to the track bed and right of way, 4,500 acres are used for rail operations/yards, and the remaining acreage is available for lease. Alaska’s rail system plays an essential role in transporting goods to and from Alaska, with freight revenue generating more than half its operating revenues. ARRC has 656 total miles of tracks and rail yards in Seward, Whittier, Anchorage, and Fairbanks that serve as centralized distribution hubs for connectivity to other transportation modes. This includes 178 bridges and large culverts greater than 10 feet in diameter.
Figure 63. Passenger Rail Network

The White Pass & Yukon Route is a privately owned tourist railroad that operates on 67.5 miles of track from the seaport at Skagway inland to Carcross, in Canada. Nearly half a million tourists ride the scenic White Pass route each year between May and September. The train runs on narrow-gauge track that climbs almost 3,000 feet on a nearly 4 percent grade. The route passes through tunnels and over steel bridges and timber trestles, offering panoramic views of glaciers, gorges, and waterfalls.

Source: ARRC Annual Report 2019
Passenger Rail

The ARRC operates six different passenger trains, serving resident, visitor, and contract markets. The frequency of each train varies depending on the season. The ARRC operates the following scheduled passenger train services:

- **The Coastal Classic** operates daily roundtrip service between Anchorage, Girdwood, and Seward between mid-May and mid-September.
- **The Denali Star** operates daily between mid-May and mid-September from Anchorage to Fairbanks (12-hour trip). A sister train in Fairbanks makes the same trip in reverse. Stops may include Wasilla, Talkeetna, and Denali National Park.
- **The Glacier Discovery** operates daily between late May and mid-September from Anchorage, with stops at Girdwood, Whittier, Portage, the Spencer Glacier Whistle Stop, and Grandview. On the return journey, Anchorage and Girdwood-bound passengers may disembark at Portage for a motorcoach transfer.
- **The Hurricane Turn** serves as a lifeline for Alaskans living off the road system north of Talkeetna. Typical stops are: Chase (MI 236.2), Curry (MI 248.5), Sherman (MI 257.7), Gold Creek (MI 263.2), Twin Bridges (MI 270), and Chulitna (MI 273.8). In the summer, it operates Thursday through Monday, departing Talkeetna and providing flag stop service to Hurricane Gulch. The Winter train operates on the first Thursday of the month, October through May, departing from Anchorage to Hurricane Gulch.
- **The Aurora Winter Train** operates from mid-September to mid-May between Anchorage and Fairbanks, with flag stop service between Takeetna and Hurricane. The train operates either northbound or southbound, depending on the day.

The ARRC plays a significant role in supporting summer tourism and the cruise industry. Cruise ships that arrive or depart from Seward or Whittier need to convey passengers to Anchorage or Fairbanks for transportation in or out of the state and for connections to other activities. The only available options for large numbers of cruise ship passengers to make this 120-mile journey are trains or motor coaches.
In addition to scheduled services, a range of contracted train services operate to provide passenger transportation connections. Almost all cruise ships choose to offer this train service. The Seward cruise train only offers trips to Anchorage. Passengers can then choose to transfer to other cruise trains or scheduled services to travel north to Denali or Fairbanks.

Discussions with Alaska Railroad staff indicate that the cruise train is an extremely popular service and is almost always fully booked. The exception was in 2020, when passenger service was down by 90 percent. It is expected to remain this way until the pandemic is under control and cruise service to Alaska can resume.

**Freight Rail System**

The ARRC’s freight service fleet includes 863 railcars that are owned or leased by ARRC, along with 180 railcars leased by customers. Historically, freight has generated about two-thirds (65 percent) of operating revenues (excluding capital grants), however, with the downturn in the coal market worldwide and the oil industry, it is now about 56 percent of the revenue. Gravel accounted for more than half of the nearly 3.5 million tons of freight moved in 2019.

**ARRC Key Trends, Challenges, and Opportunities**

**TRENDS:**

- The rail system plays an essential role in tourism and transporting goods, with freight revenue generating more than half its operating revenues.
- Rail yards in Seward, Whittier, Anchorage, and Fairbanks serve as centralized distribution hubs that rely on a strong roadway and marine network.

**CHALLENGES:**

- The downturn in freight and tourism revenues has put pressure on the ARRC’s ability to earn sufficient revenues to both operate service and adequately maintain the railroad.
- The rail system can be impacted by various unpredictable hazards. The 7.1-magnitude earthquake in 2018 caused significant damage to the track, right of way, and facilities.
Weather events and wildfires disrupted freight and passenger rail services and are expected to continue causing disruptions in the future. Finally, COVID-19 has had a devastating impact on the cruise industry and in turn on passenger rail service.

**OPPORTUNITIES:**

- Needs are always greater than funding available for projects, but ARRC continues to make progress on operations and maintenance, engaging with planning partners to:
  - Implement a positive train control (PTC) system that prevents human errors that may cause catastrophic results. This task has been delayed, allowing ARRC time to complete it beyond the federally-mandated milestone of December 31, 2020.
  - Rehabilitate main lines, sidings and yards from Seward to Fairbanks, including embankment stabilization, culvert crossings, etc.
  - Implement and continuously update the Bridge Program, which identifies structures to be upgraded, overhauled, or replaced. The current five-year plan calls for 13 bridge projects to be completed in the future.
  - Monitor the long-term agreement to support the A2A Railway Development Corporation’s proposal to build a 1,500-mile rail connection between Alaska and Canada.
  - Engage in discussions with planning partners to expand rail service (commuter rail) between Anchorage and the Mat-Su Valley as well as south to Indian and Girdwood. This includes track realignments, an intermodal hub in Wasilla and reactivating the Bill Sheffield Alaska Railroad Depot at ANC.
  - Continue to pursue an intermodal transportation center in the Ship Creek area in Anchorage to facilitate connections between rail, air, marine, transit, passenger, and freight vehicles, and active transportation.
REFERENCES


11 American Society of Civil Engineers. 2020 Infrastructure Report Card. February 2021.


xii Alaska Department of Transportation and Public Facilities. AIP funding history, federal fiscal year 1995 through 2020 (worksheet provided by DOT&PF). Received by e-mail January 28, 2021.
Alaska Department of Transportation and Public Facilities. Unrestricted General Fund Revenues and Expenses (worksheet provided by DOT&PF). Received by e-mail January 28, 2021.


https://www.fhwa.dot.gov/planning/national_highway_system/intermodal_connectors/alaska.cfm


Alaska Department of Transportation & Public Facilities staff correspondence. February 4, 2021.

Alaska Department of Transportation & Public Facilities staff correspondence. February 4, 2021.


Bureau of Transportation Statistics – Principal Ports (Total Tons)


Inter-Island Ferry Authority. Alaska’s Inter-Island Ferry Authority. 2021. https://interislandferry.com/


Per federal requirements, Alaska Moves 2050 must include the following items:\(^1\):

(A) support the economic vitality of the United States, the States, nonmetropolitan areas, and metropolitan areas, especially by enabling global competitiveness, productivity, and efficiency;

(B) increase the safety of the transportation system for motorized and nonmotorized users;

(C) increase the security of the transportation system for motorized and nonmotorized users;

(D) increase the accessibility and mobility of people and freight;

(E) protect and enhance the environment, promote energy conservation, improve the quality of life, and promote consistency between transportation improvements and State and local planned growth and economic development patterns;

(F) enhance the integration and connectivity of the transportation system, across and between modes throughout the State, for people and freight;

(G) promote efficient system management and operation;

(H) emphasize the preservation of the existing transportation system;

(I) improve the resiliency and reliability of the transportation system and reduce or mitigate stormwater impacts of surface transportation; and

(J) enhance travel and tourism.

These requirements are detailed in the following table, along with their associated statute. As Alaska Moves 2050 progresses, the Status and Location within the Plan will be completed as part of the ‘checklist’.

---

\(^1\) [https://www.fhwa.dot.gov/fastact/factsheets/statewideplanningfs.cfm](https://www.fhwa.dot.gov/fastact/factsheets/statewideplanningfs.cfm)
### General

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the LRTP address at minimum a 20 year forecast with focus on multimodal system?</td>
<td>23 CFR 450.216 (a)²</td>
<td></td>
</tr>
<tr>
<td>Does the LRTP include capital, operations and management strategies, investments, procedures, and other measures to ensure preservation and efficiency in the existing system?</td>
<td>23 CFR 450.216 (b)</td>
<td></td>
</tr>
<tr>
<td>Does the LRTP summarize existing relevant plans, policies, studies, and reports?</td>
<td>23 CFR 450.216 (c)</td>
<td></td>
</tr>
<tr>
<td>Does the LRTP integrate priorities, goals, countermeasures, strategies, or projects contained in the HSIP and SHSP (23 USC 148)?</td>
<td>23 CFR 450.216 (d)</td>
<td></td>
</tr>
<tr>
<td>Does the LRTP include a safety and security element that incorporates or summarizes the priorities, goals, or projects set forth in other safety documents?</td>
<td>23 CFR 450.216 (e)</td>
<td></td>
</tr>
<tr>
<td>Does the LRTP consider:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. The role that intercity buses may play in reducing congestion, pollution, and energy consumption in a cost-effective manner?</td>
<td>23 USC 135(f)(8)</td>
<td></td>
</tr>
<tr>
<td>2. Strategies and investments that preserve and enhance intercity bus systems (including those that are privately owned and operated)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the LRTP include:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. a description of the performance measures and targets as per CRF 450.206(c)?</td>
<td>23 CFR 450.216 (f) and 23 USC 135(f)(7)</td>
<td></td>
</tr>
</tbody>
</table>

² [https://www.law.cornell.edu/cfr/text/23/450.216](https://www.law.cornell.edu/cfr/text/23/450.216)
### Requirement | Code of Federal Regulation (CFR Reference) | Status & Location in LRTP
--- | --- | ---
2. a system performance report and subsequent evaluations compared to previous reports? | | |
Does the LRTP provide for the establishment and use of a performance-based approach to transportation decision making to support the national goals described in 23 USC 150(b) and general purposes in 49 USC 5301? | 23 USC 135(d)(2)(A) | |
Does the LRTP include projects, strategies, and services that will: | | |
1. Improve transportation system resiliency and reliability? | 23 USC 135(d)[1], [l, j] | |
2. Reduce (or mitigate) the stormwater impacts of surface transportation? | | |
3. Enhance travel and tourism? | | |
Has DOT&PF continually evaluated, revised, and periodically updated the LRTP? | 23 CFR 450.216 (p) | |
Has DOT&PF provided revised copies of the LRTP to FHWA and FTA? | 23 CFR 450.216 (q) | |
### Consultation / Cooperation Requirements
Does the LRTP contain a public involvement plan that provides adequate public notice of public participation activities and time for public review and comment at key decision points? | Best Practice | |
Does the public involvement plan describe how the LRTP consulted with state, tribal, and local land use, natural resource, and environmental agencies during plan development? | 23 CFR 450.216 (j) | |
Does the public involvement plan describe how the LRTP included and considered the needs of those traditionally underserved by the existing transportation system, such as low-income minority households, who may face challenges accessing employment and other services? | Best Practice [23 CFR 450.316 (a)(i)(vii)] | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the public involvement plan provide:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Nonmetropolitan local elected officials with an opportunity to participate?</td>
<td>23 CFR 450.216 (l) and 23 USC 135(f)(3)(A)(ii) &amp;(g)(3)</td>
<td></td>
</tr>
<tr>
<td>2. Individuals, public agencies, transit employees, ports representatives, freight representatives, private transit representatives, users of pedestrian &amp; bicycle facilities representatives, and people with disabilities with the opportunity to comment?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the LRTP available for public review?</td>
<td>23 CFR 450.216 (o)</td>
<td></td>
</tr>
<tr>
<td><strong>Environmental</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the LRTP discuss potential environmental mitigation activities through policies, programs, or strategies?</td>
<td>23 CFR 450.216 (k)</td>
<td></td>
</tr>
<tr>
<td>Does the LRTP comply with the Federal Clean Air Act?</td>
<td>Section 176 of the Federal Clean Air Act (42 U.S.C Section 7506)</td>
<td></td>
</tr>
<tr>
<td><strong>Financial</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the LRTP include a financial plan that demonstrates how the LRTP can be implemented with recommendations for financing strategies for needed projects and programs?</td>
<td>23 CFR 450.216 (m)</td>
<td></td>
</tr>
</tbody>
</table>
EXISTING PLANS SUMMARY

Highway Safety

Plans reviewed for highway safety include:

- Alaska Strategic Highway Safety Plan (2018 - 2022)

Alignment

- “Creating a safer, more efficient transportation system”
- “Toward zero deaths and serious injuries so all public roadway users arrive safely at their destination”

Strategies

- Utilize Data and Analysis to Improve Traffic Safety
- Annual Safety Data Reporting
- Widen Shoulders in High Crash Areas

Gaps

- Upward trend in fatalities in Alaska between 2009 – 2019
Aviation

Plans reviewed for aviation include:

- Alaska Aviation System Plan (2019)

### Alignment
- Sub-area plans completed during 2019 planning process to provide updated project needs for the aviation system

### Strategies
- Expand Website Data Tracking Capabilities

### Gaps
- Full Pavement Management Study Needed
Freight (Marine, Truck, and Rail)

Plans reviewed for marine, truck, and rail freight include:

- Alaska Weigh in Motion Plan Update (2018)
- Port of Alaska in Anchorage Fact Sheet (2020)
- Port of Alaska in Anchorage Logistical and Economic Advantages of Alaska’s Primary In-Bound Port Fact Sheet (2020)
- Railport Seward – Seward Marine Terminal Master Plan (2017)
- Valdez Comprehensive Waterfront Master Plan (2019)
- FAST Planning Freight Mobility Plan (2019)

Alignment

- “Reliable, affordable, timely, safe, and secure”
- Creating new facilities to support economic development
- Freight is often transshipped by rail, truck, air, and barge throughout Alaska

Strategies

- Performance Based Resource Allocation to Increase Revenue and Accountability
- Public and Private Freight Issues Working Group
- Increase Vehicle Data Accuracy by Using Alaska-specific data at Weigh in Motion stations

Gaps

- Systematic statewide metric for acceptable truck performance
- State mandate for number of vehicles weighed at Weigh in Motion stations
- Scalable Oversized/Overweight Vehicle Permit and Payment System
- Funding sources for new port facility creation (Arctic)
Ferry

Plans reviewed for ferries include:


### Alignment
- Provide essential service in a cost-efficient manner
- Recommends performance-based planning to improve system reliability, increase revenues, and reduce costs

### Policies
- Fare Increases
- Maintain Existing Governance Structure with Governor-Appointed AMHS Operations Board

### Gaps
- Steady, forward funding
- Clear and simple union contracts
Active Transportation (Walking and Biking)

Plans reviewed for active transportation include:

- Alaska Statewide Active Transportation Plan (2019)
- AMATS Non-Motorized Transportation Plan (2019)
- Juneau Non-Motorized Plan (2009)
- Anchorage Pedestrian Plan (2007)

Alignment

- “People in Alaska will enjoy equitable, accessible, and safer walking and bicycling opportunities as an integral part of daily life”
- Safety & Livability

Strategies

- Active Transportation Inventory Program

Policies

- Complete Streets
- Safe Passing Distance (Law)
- Vulnerable Road User (Law)

Gaps

- Bikeshare program (Fairbanks) excluded from plans
Transit (Bus and Rail)

Plans reviewed for highway safety include:

- Alaska State Rail Plan (2016)
- Transit on the Move – Anchorage Transit Plan (2020)
- City and Borough of Juneau Transit Development Plan (2014)
- Fairbanks North Star Borough Short & Long Range Transit Plan (2013)

Alignment
- Maintenance, safety, modernization performance measures
- “Provide safe and efficient freight and passenger [rail] services coordinated with other transportation modes, regionally and internationally”

Strategies
- Increase transit facilities to expand services

Gaps
- Steady, forward funding
Regional Plans

Regional plans reviewed include:

- Yukon-Kuskokwim Delta Transportation Plan (2018)
- Southwest Alaska Transportation Plan Update (2016)
- Southeast Alaska Transportation Plan – Draft (2014)
- Interior Alaska Transportation Plan (2010)
- Northwest Alaska Transportation Plan (2004) – Currently being updated
- Prince William Sound Area Transportation Plan (2001)

Alignment

- Recognize the importance of AK’s multi- and inter-modal transportation system
- Recognize cost constraints as well as large unmet need for system preservation and modernization

Strategies

- Alignment with Performance-Based Measurement System
- Prioritize Investments that Spur Resource Development, Fishing, and Tourism

Gaps

- Modernization
- Overall Acknowledgement of Climate Change Impacts
- Older Plans Exclude Performance Measurement
## Metropolitan Planning Organization Plans

MPO plans reviewed include:

- FMATS 2045 Metropolitan Transportation Plan (2018) – Currently being updated
- AMATS Metropolitan Transportation Plan 2040 (2020)

### Alignment

- A vision of safe, well-maintained roadways for vehicles, to keep freight moving, and broadening walking, bicycling, and transit options
- Develop a balanced multi-modal transportation system that serves as a catalyst to enhance quality of life in Anchorage

### Strategies

- Improve Multi-Modal Options
- Prioritize Investments that Spur Economic Vitality

### Gaps

- Overall Acknowledgement of Climate Change Impacts
- Older Plan Exclude Performance Measurement
Other Relevant Plans

Other relevant, statewide plans reviewed include:

- Alaska Department of Transportation and Public Facilities Non-Metropolitan Local Official (2020)
- Alternative Fuels – Public Fleets Phase 1 Technical Memorandum (2014)
- Alaska Federal Lands Long Range Transportation Plan (2011)
- Alaska DOT&PF Strategic Plan (2008)